分析 (Ⅰ)設(shè)A表示“從甲箱中摸出1個(gè)綠球”,B表示“從乙箱中摸出1個(gè)黃球”,依題意,沒獲獎(jiǎng)的事件為AB,先求出沒獲獎(jiǎng)的概率,由此利用對(duì)立事件概率計(jì)算公式能求出每名職工獲獎(jiǎng)的概率.
(Ⅱ)每名員工獲得一等獎(jiǎng)或二等獎(jiǎng)的概率為$\frac{3}{8}$,隨機(jī)變量X的可能取值為0,1,2,3,則P(X=k)=${C}_{3}^{k}(\frac{3}{8})^{k}(1-\frac{3}{8})^{3-k}$,k=0,1,2,3,由此能求出X的分布列及E(X).
解答 解:(Ⅰ)設(shè)A表示“從甲箱中摸出1個(gè)綠球”,B表示“從乙箱中摸出1個(gè)黃球”,
依題意,沒獲獎(jiǎng)的事件為AB,其概率為P(AB)=P(A)P(B)=$\frac{5}{8}×\frac{2}{8}$=$\frac{5}{32}$,
∴每名職工獲獎(jiǎng)的概率p=1-P(AB)=1-$\frac{5}{32}$=$\frac{27}{32}$.
(Ⅱ)每名員工獲得一等獎(jiǎng)或二等獎(jiǎng)的概率為p=$\frac{3}{8}×\frac{3}{8}+\frac{5}{8}×\frac{3}{8}$=$\frac{3}{8}$,
隨機(jī)變量X的可能取值為0,1,2,3,
則P(X=k)=${C}_{3}^{k}(\frac{3}{8})^{k}(1-\frac{3}{8})^{3-k}$,k=0,1,2,3,
P(X=0)=${C}_{3}^{0}(\frac{5}{8})^{3}$=$\frac{125}{512}$,
P(X=1)=${C}_{3}^{1}(\frac{3}{8})(\frac{5}{8})^{2}$=$\frac{225}{512}$,
P(X=2)=${C}_{3}^{2}(\frac{3}{8})^{2}(\frac{5}{8})$=$\frac{135}{512}$,
P(X=3)=${C}_{3}^{3}(\frac{3}{8})^{3}$=$\frac{27}{512}$,
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P | $\frac{125}{512}$ | $\frac{225}{512}$ | $\frac{135}{512}$ | $\frac{27}{512}$ |
點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意n次獨(dú)立重復(fù)試驗(yàn)中事件A恰好發(fā)生k次的概率計(jì)算公式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
種植地編號(hào) | A1 | A2 | A3 | A4 | A5 |
(x,y,z) | (0,1,0) | (1,2,1) | (2,1,1) | (2,2,2) | (0,1,1) |
種植地編號(hào) | A6 | A7 | A8 | A9 | A10 |
(x,y,z) | (1,1,2) | (2,1,2) | (2,0,1) | (2,2,1) | (0,2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 23 | B. | 19 | C. | -17 | D. | -18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com