【題目】已知, .
(1)求當(dāng)時, 的值域;
(2)若函數(shù)在內(nèi)有且只有一個零點,求的取值范圍.
【答案】(1).(2).
【解析】試題分析:
(1)化簡函數(shù)的解析式,換元為二次函數(shù),轉(zhuǎn)化為二次函數(shù)在給定區(qū)間上的值域的問題可得函數(shù)的值域為
(2)利用題意結(jié)合換元后二次函數(shù)的性質(zhì)得到關(guān)于實數(shù)a的不等式組,求解不等式組可得的取值范圍是.
試題解析:
(1)當(dāng)時, ,令,則, , ,當(dāng)時, ,當(dāng)時, ,
所以的值域為.
(2),
令,則當(dāng)時, , ,
, 在內(nèi)有且只有一個零點等價于在內(nèi)有且只有一個零點, 無零點.因為,∴在內(nèi)為增函數(shù),
①若在內(nèi)有且只有一個零點, 無零點,
故只需得;
②若為的零點, 內(nèi)無零點,則,得,經(jīng)檢驗, 不符合題意.
綜上, .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】口袋中裝有4個形狀大小完全相同的小球,小球的編號分別為1,2,3,4,甲、乙依次有放回地隨機抽取1個小球,取到小球的編號分別為.在一次抽取中,若有兩人抽取的編號相同,則稱這兩人為“好朋友”,則甲、乙兩人成為“好朋友”的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以橢圓的四個頂點為頂點的四邊形的四條邊與共有個交點,且這個交點恰好把圓周六等分.
(1)求橢圓的方程;
(2)若直線與相切,且橢圓相交于兩點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】食品添加劑會引起血脂增高、血壓增高、血糖增高等疾病,為了解三高疾病是否與性別有關(guān),醫(yī)院隨機對入院的60人進行了問卷調(diào)查,得到了如下的列聯(lián)表:
(1)請將列聯(lián)表補充完整;若用分層抽樣的方法在患三高疾病的人群中抽9人,其中女性抽幾人?
患三高疾病 | 不患三高疾病 | 合計 | |
男 | 6 | 30 | |
女 | |||
合計 | 36 |
(2)為了研究三高疾病是否與性別有關(guān),請計算出統(tǒng)計量,并說明你有多大把握認為患三高疾病與性別有關(guān).
下列的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若四面體的三組對棱分別相等,即
給出下列結(jié)論:
①四面體每個面的面積相等;
②從四面體每個頂點出發(fā)的三條棱兩兩夾角之和大于 而小于 ;
③連結(jié)四面體每組對棱中點的線段相互垂直平分;
④從四面體每個頂點出發(fā)的三條棱的長可作為一個三角形的三邊長;
其中正確結(jié)論的序號是__________。(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,已知F1、F2分別是橢圓C:+=1(a>b>0)的左、右焦點,且右焦點F2的坐標(biāo)為(,0),點(,)在橢圓C上.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)在橢圓C上任取一點P,點Q在PO的延長線上,且=2.
(1)當(dāng)點P在橢圓C上運動時,求點Q形成的軌跡E的方程;
(2)若過點P的直線l:y=x+m交(1)中的曲線E于A,B兩點,求△ABQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本,當(dāng)年產(chǎn)量不足80千件時,(萬元);當(dāng)年產(chǎn)量不小于80千件時(萬元),通過市場分析,若每件售價為500元時,該廠本年內(nèi)生產(chǎn)該商品能全部銷售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,已知AA1⊥底面ABC,AC⊥BC,四邊形BB1C1C為正方形,設(shè)AB1的中點為D,B1C∩BC1=E.
求證:(1)DE∥平面AA1C1C;
(2)BC1⊥平面AB1C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示,在直角梯形中,,,,,是的中點,是與的交點.將△沿折起到△的位置,如圖(2)所示.
(1)證明:平面;
(2)若平面平面,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com