(12分)我們把同時滿足下列兩個性質(zhì)的函數(shù)稱為“和諧函數(shù)” :
①函數(shù)在整個定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);
②在函數(shù)的定義域內(nèi)存在區(qū)間,使得函數(shù)在區(qū)間上的值域為.
⑴已知冪函數(shù)的圖像經(jīng)過點,判斷是否是和諧函數(shù)?
⑵判斷函數(shù)是否是和諧函數(shù)?
⑶若函數(shù)是和諧函數(shù),求實數(shù)的取值范圍.

(1)是和諧函數(shù)。(2)不是和諧函數(shù)。(3) .

解析試題分析:. (1)設,由,得
上是增函數(shù),
,得
是和諧函數(shù)。                 ………………………4分
⑵易得上的減函數(shù),
① 若,相減得矛盾;
② 若,矛盾;
③ 若,矛盾。
不是和諧函數(shù)。               ………………………………………8分
上是增函數(shù),
由函數(shù)是和諧函數(shù)知, 函數(shù)內(nèi)存在區(qū)間,使得函數(shù)在區(qū)間上的值域為.

是方程在區(qū)間內(nèi)的兩個不等實根
在區(qū)間內(nèi)的兩個不等實根,
         ………………………12分
考點:函數(shù)的單調(diào)性;函數(shù)的值域;函數(shù)的綜合應用;一元二次方程根的分布問題。
點評:(1)此題以新定義為背景,來考查函數(shù)的綜合應用?疾榱藢W生分析問題、解決問題的能力以及分類討論的數(shù)學思想。(2)設一元二次方程)的兩個實根為,且
① ,(兩個正根)
② ,(兩個負根);
③ (一個正根一個負根)。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)。
(1)是否存在實數(shù),使是奇函數(shù)?若存在,求出的值;若不存在,給出證明。
(2)當時,恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知其中.(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)在區(qū)間內(nèi)恰有兩個零點,求的取值范圍;
(3)當時,設函數(shù)在區(qū)間上的最大值為最小值為,記,求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,ABCD是一塊邊長為100m的正方形地皮,其中AST是一半徑為90m的扇形小山,其他部分都是平地.一開發(fā)商想在平地上建一個矩形停車場,使矩形的一個頂點P在弧ST上,相鄰兩邊CQ,CR落在正方形的邊BC,CD上,求矩形停車場PQCR的面積S的最大值和最小值(結(jié)果取整數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分8分)
某商店經(jīng)營的消費品進價每件14元,月銷售量(百件)與銷售價格(元)的關系如下圖,每月各種開支2000元.

(1)寫出月銷售量(百件)與銷售價格(元)的函數(shù)關系;
(2)寫出月利潤(元)與銷售價格(元)的函數(shù)關系;
(3)當商品價格每件為多少元時,月利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)如果函數(shù)的單調(diào)減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖像過點的切線方程;
(3)證明:對任意的,不等式恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的圖像與軸有兩個交點
(1)設兩個交點的橫坐標分別為試判斷函數(shù)有沒有最大值或最小值,并說明理由.
(2)若在區(qū)間上都是減函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)對定義域分別是、的函數(shù)、,
規(guī)定:函數(shù)
已知函數(shù),
(1)求函數(shù)的解析式;
⑵對于實數(shù),函數(shù)是否存在最小值,如果存在,求出其最小值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

( 本題滿分14分)已知函數(shù)對任意實數(shù)均有,其中常數(shù)k為負數(shù),且在區(qū)間上有表達式
(1)求的值;
(2)寫出上的表達式,并討論函數(shù)上的單調(diào)性.

查看答案和解析>>

同步練習冊答案