2.已知圓P:x2+y2=5,則經(jīng)過(guò)點(diǎn)M(-1,2)且與圓P相切的直線方程是x-2y+5=0.

分析 求出圓的圓心為P(0,0),半徑r=$\sqrt{5}$.設(shè)過(guò)M點(diǎn)的切線方程為y-2=k(x+1),利用點(diǎn)到直線的距離建立關(guān)于k的等式,解之得k=$\frac{1}{2}$,即可得到所求圓的切線方程.

解答 解:圓x2+y2=5的圓心為P(0,0),半徑r=$\sqrt{5}$.
根據(jù)題意,可得過(guò)M(-1,2)的切線斜率存在,設(shè)其方程為y-2=k(x+1),即kx-y+2+k=0.
∵直線與圓x2+y2=5相切,
∴圓心O到直線的距離等于半徑r,即d=$\frac{|2+k|}{\sqrt{{k}^{2}+1}}$=$\sqrt{5}$,
化簡(jiǎn)整理得:4k2-4k-1=0,解之得k=$\frac{1}{2}$,
∴直線方程為y-2=$\frac{1}{2}$(x+1),化簡(jiǎn)得x-2y+5=0.
故答案為:x-2y+5=0.

點(diǎn)評(píng) 本題給出圓的方程,求圓經(jīng)過(guò)定點(diǎn)的切線方程.著重考查了直線的方程、圓的標(biāo)準(zhǔn)方程和直線與圓的位置關(guān)系等知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若冪函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)A($\frac{1}{4}$,$\frac{1}{2}$),則曲線y=f(x)在A點(diǎn)處的切線方程是4x-4y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知正數(shù)a,b的等比中項(xiàng)是2,且m=b+$\frac{1}{a}$,n=a+$\frac{1}$,則m+n的最小值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖:已知曲線C1:y=$\sqrt{2x-{x^2}}$,曲線C2和C3是半徑相等且圓心在x軸上的半圓.在曲線C1與x軸所圍成的區(qū)域內(nèi)任取一點(diǎn),則所取的點(diǎn)來(lái)自于陰影部分的概率為( 。
A.$\frac{3}{7}$B.$\frac{1}{2}$C.$\frac{4}{7}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.${∫}_{\frac{π}{2}}^{π}$cosxdx=(  )
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某田徑隊(duì)有三名短跑運(yùn)動(dòng)員,根據(jù)平時(shí)訓(xùn)練情況統(tǒng)計(jì),甲、乙、丙三人100m跑(互不影響)的成績(jī),在13秒內(nèi)(稱為合格)的概率分別為$\frac{2}{5},\frac{3}{4},\frac{1}{3}$,若對(duì)這三名短跑運(yùn)動(dòng)員的100m跑的成績(jī)進(jìn)行一次檢測(cè),則:
①三人都合格的概率;
②有2人合格的概率;
③至少有一個(gè)合格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)等差數(shù)列{an}的公差為d,且a1,d∈N*.若設(shè)M1是從a1開(kāi)始的前t1項(xiàng)數(shù)列的和,即M1=a1+…+at1(1≤t1,t1∈N*),${M_2}={a_{{t_1}+1}}+{a_{{t_1}+2}}+…+{a_{t_2}}(1<{t_2}∈{N^*})$,如此下去,其中數(shù)列{Mi}是從第ti-1+1(t0=0)開(kāi)始到第ti(1≤ti)項(xiàng)為止的數(shù)列的和,即${M_i}={a_{{t_{i-1}}+1}}+…+{a_{t_i}}(1≤{t_i},{t_i}∈{N^*})$.
(1)若數(shù)列an=n(1≤n≤13,n∈N*),試找出一組滿足條件的M1,M2,M3,使得:M22=M1M3;
(2)試證明對(duì)于數(shù)列an=n(n∈N*),一定可通過(guò)適當(dāng)?shù)膭澐,使所得的?shù)列{Mn}中的各數(shù)都為平方數(shù);
(3)若等差數(shù)列{an}中a1=1,d=2.試探索該數(shù)列中是否存在無(wú)窮整數(shù)數(shù)列{tn},(1≤t1<t2<t3<…<tn),n∈N*,使得{Mn}為等比數(shù)列,如存在,就求出數(shù)列{Mn};如不存在,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.${(\frac{7}{{\sqrt{x}}}-\root{3}{x})^n}$的展開(kāi)式中,各項(xiàng)系數(shù)的和與二項(xiàng)式系數(shù)的和之比為729,則(x-1)n的展開(kāi)式中系數(shù)最小項(xiàng)的系數(shù)等于-20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=log2x-1,則f(-$\frac{\sqrt{2}}{4}$)=$\frac{5}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案