12.已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=log2x-1,則f(-$\frac{\sqrt{2}}{4}$)=$\frac{5}{2}$.

分析 由f(x)為奇函數(shù)先得到$f(-\frac{\sqrt{2}}{4})=-f(\frac{\sqrt{2}}{4})$,而將x=$\frac{\sqrt{2}}{4}$代入f(x)=log2x-1即可求出$f(\frac{\sqrt{2}}{4})$,從而求出$f(-\frac{\sqrt{2}}{4})$的值.

解答 解:根據(jù)條件:
$f(-\frac{\sqrt{2}}{4})=-f(\frac{\sqrt{2}}{4})$
=$-(lo{g}_{2}{2}^{-\frac{3}{2}}-1)$
=$\frac{5}{2}$.
故答案為:$\frac{5}{2}$.

點(diǎn)評 考查奇函數(shù)的定義,以及已知函數(shù)求值的方法,指數(shù)式的運(yùn)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知圓P:x2+y2=5,則經(jīng)過點(diǎn)M(-1,2)且與圓P相切的直線方程是x-2y+5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在約束條件$\left\{\begin{array}{l}x+2y≤4\\ x-y≤1\\ x+2≥0\end{array}\right.$下,
(1)求函數(shù)z=3x-y的最小值;
(2)若3x-y-m≤0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=ax+$\frac{1}{2}$xln2x.
(1)若a=0,求f(x)的單調(diào)增區(qū)間;
(2)若x∈[1,e]時(shí),有f(x)≤ax2成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn)為F(1,0),點(diǎn)(-1,$\frac{\sqrt{2}}{2}$)在橢圓C上,點(diǎn)T滿足$\overrightarrow{OT}$=$\frac{{a}^{2}}{\sqrt{{a}^{2}-^{2}}}$•$\overrightarrow{OF}$(其中O為坐標(biāo)原點(diǎn)),過點(diǎn)F作一斜率為k(k>0)的直線交橢圓于P、Q兩點(diǎn)(其中P點(diǎn)在x軸上方,Q點(diǎn)在x軸下方).
(1)求橢圓C的方程;
(2)若k=1,求△PQT的面積;
(3)設(shè)點(diǎn)P′為點(diǎn)P關(guān)于x軸的對稱點(diǎn),判斷$\overrightarrow{P′Q}$與$\overrightarrow{QT}$的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=-sin2x+2asinx+5
(1)當(dāng)a=$\frac{1}{2}$時(shí),求函數(shù)f(x)的值域;
(2)當(dāng)f(x)=0有實(shí)數(shù)解時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)F1,F(xiàn)2分別是$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn).若在橢圓上存在點(diǎn)P滿足|PF1|=|F1F2|,且原點(diǎn)到直線PF2的距離等于橢圓的短半軸長,則該橢圓的離心率為(  )
A.$\frac{5}{7}$B.$\frac{7}{5}$C.$\frac{1}{7}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.當(dāng)2<k<3時(shí),曲線$\frac{x^2}{2-k}+\frac{y^2}{3-k}$=1與曲線$\frac{x^2}{3}+\frac{y^2}{2}$=1有相同的( 。
A.焦點(diǎn)B.準(zhǔn)線C.焦距D.離心率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,周長為36cm,且sinA:sinB:sinC=5:6:7,下列結(jié)論:
①a:b:c=5:6:7
②a:b:c=$\sqrt{5}$:$\sqrt{6}$:$\sqrt{7}$
③a=10cm,b=12cm,c=14cm
④A:B:C=5:6:7
其中成立的個(gè)數(shù)是( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

同步練習(xí)冊答案