分析 (1)利用換元法,設t=sinx,則原函數(shù)變形為y=-t2+t+5 t∈[-1,1],求值域.
(2)利用函數(shù)的單調性分類討論.
解答 解:(1)當a=$\frac{1}{2}$時,f(x)=-sin2x+sinx+5,設t=sinx,則原函數(shù)變形為y=-t2+t+5 t∈[-1,1],
有二次函數(shù)的性質可得:
當t=$\frac{1}{2}$時,y取得最大值$\frac{21}{4}$;
當t=-1時,y取得最小值3.
所以:f(x)的值域為$[{3,\frac{21}{4}}]$.
(2)設λ=sinx,則原函數(shù)變形為y=-λ2+2aλ+5 λ∈[-1,1],
要使f(x)=0有實數(shù)解:
①a>1時,函數(shù)在λ∈[-1,1]上單調遞增,因此有$\left\{\begin{array}{l}4-2a≤0⇒a≥2\\ 4+2a≥0⇒a≥-2\end{array}\right.⇒a≥2$
②-1≤a≤1時,有 $\left\{\begin{array}{l}f(a)≥0⇒a∈R\\ f(1)≤0或f(-1)≤0⇒a≥2或a≤-2\end{array}\right.$,所以此時無解.
③a<-1時,函數(shù)在t∈[-1,1]上單調遞減,$\left\{\begin{array}{l}4+2a≤0⇒a≤-2\\ 4-2a≥0⇒a≤2\end{array}\right.⇒a≤-2$
綜上所述:a≥2或a≤-2.
點評 本題主要考查了換元法解題的思想,和二次函數(shù)的圖象及性質的運用.屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 18 | B. | 144 | C. | 48 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1} | B. | {0} | C. | {0,2} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{2π}{3}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com