【題目】設(shè)數(shù)列滿足

(1)求的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和

【答案】(1);(2).

【解析】

(1)在中,將得: ,由兩式作商得:,問題得解。

(2)利用(1)中結(jié)果求得,分組求和,再利用等差數(shù)列前項(xiàng)和公式及乘公比錯(cuò)位相減法分別求和即可得解。

(1)由n=1得,

因?yàn)?/span>,

當(dāng)n≥2時(shí),,

由兩式作商得:(n>1且n∈N*),

又因?yàn)?/span>符合上式,

所以(n∈N*).

(2)設(shè),

則bn=n+n·2n,

所以Sn=b1+b2+…+bn=(1+2+…+n)+

設(shè)Tn=2+2·22+3·23+…+(n-1)·2n-1+n·2n,①

所以2Tn=22+2·23+…(n-2)·2n-1+(n-1)·2n+n·2n+1,②

①-②得:-Tn=2+22+23+…+2n-n·2n+1,

所以Tn=(n-1)·2n+1+2.

所以,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以P為頂點(diǎn)的圓錐中,母線長為,底面圓的直徑AB長為2,O為圓心.C是圓O所在平面上一點(diǎn),且AC與圓O相切.連接BC交圓于點(diǎn)D,連接PD,PCEPC的中點(diǎn),連接OE,ED.

1)求證:平面平面PAC;

2)若二面角的大小為,求面PAC與面DOE所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:過點(diǎn)和點(diǎn).

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)直線與橢圓相交于不同的兩點(diǎn), ,是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為拋物線的焦點(diǎn),過的動(dòng)直線交拋物線,兩點(diǎn).當(dāng)直線與軸垂直時(shí),

(1)求拋物線的方程;

(2)設(shè)直線的斜率為1且與拋物線的準(zhǔn)線相交于點(diǎn),拋物線上存在點(diǎn)使得直線,的斜率成等差數(shù)列,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 中,,分別為,邊的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且

(1)證明:平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,網(wǎng)上購物已經(jīng)成為人們消費(fèi)的一種習(xí)慣.假設(shè)某淘寶店的一種裝飾品每月的銷售量 (單位:千件)與銷售價(jià)格 (單位:元/件)之間滿足如下的關(guān)系式:為常數(shù).已知銷售價(jià)格為元/件時(shí),每月可售出千件.

(1)求實(shí)數(shù)的值;

(2)假設(shè)該淘寶店員工工資、辦公等所有的成本折合為每件2元(只考慮銷售出的裝飾品件數(shù)),試確定銷售價(jià)格的值,使該店每月銷售裝飾品所獲得的利潤最大.(結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某縣畜牧技術(shù)員張三和李四年來一直對該縣山羊養(yǎng)殖業(yè)的規(guī)模進(jìn)行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數(shù)量(單位:萬只)與相應(yīng)年份(序號)的數(shù)據(jù)表和散點(diǎn)圖(如圖所示),根據(jù)散點(diǎn)圖,發(fā)現(xiàn)yx有較強(qiáng)的線性相關(guān)關(guān)系.

年份序號

年養(yǎng)殖山羊/萬只

1)根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計(jì)量,求關(guān)于的線性回歸方程(參考統(tǒng)計(jì)量:,

2)李四提供了該縣山羊養(yǎng)殖場的個(gè)數(shù)(單位:個(gè))關(guān)于的回歸方程.

試估計(jì):①該縣第一年養(yǎng)殖山羊多少萬只?

②到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?

附:回歸直線方程的斜率和截距的最小二乘估計(jì)公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某外國語學(xué)校舉行的(高中生數(shù)學(xué)建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎(jiǎng).按女生、男生用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.

(Ⅰ)求的值,并計(jì)算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯(cuò)誤的概率不超過的前提下能否認(rèn)為“獲獎(jiǎng)與女生、男生有關(guān)”.

女生

男生

總計(jì)

獲獎(jiǎng)

不獲獎(jiǎng)

總計(jì)

附表及公式:

其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三點(diǎn)、都在圓.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)若經(jīng)過點(diǎn)的直線被圓所截得的弦長為,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案