【題目】如圖,在以P為頂點(diǎn)的圓錐中,母線長為,底面圓的直徑AB長為2,O為圓心.C是圓O所在平面上一點(diǎn),且AC與圓O相切.連接BC交圓于點(diǎn)D,連接PDPC,EPC的中點(diǎn),連接OE,ED.

1)求證:平面平面PAC;

2)若二面角的大小為,求面PAC與面DOE所成二面角的余弦值.

【答案】1)證明見解析(2

【解析】

1)由,得,再得,從而可得線面垂直,于是有面面垂直;

(2)二面角的平面角為,大小為,這樣以軸,在底面上作軸建立如圖的空間直角坐標(biāo)系,用向量法求二面角.

1)證明:AB是底面圓的直徑,AC與圓切于點(diǎn)A,

所以,

底面,則,,

所以:

又因?yàn),在三角?/span>PAB中,

,所以PAC,PBC

所以:平面平面PAC;

2)因?yàn)?/span>,,

為二面角的平面角,

,如圖建立坐標(biāo)系,易知,

,,

,,,

由(1)知為平面PAC的一個(gè)法向量,

設(shè)平面ODE的法向量為,

,

,

解得:,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求證:,其中;

(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是不小于3的正整數(shù),集合,對(duì)于集合中任意兩個(gè)元素,.

定義1:.

定義2:若,則稱,互為相反元素,記作,或.

(Ⅰ)若,,,試寫出,以及的值;

(Ⅱ)若,證明:;

(Ⅲ)設(shè)是小于的正奇數(shù),至少含有兩個(gè)元素的集合,且對(duì)于集合中任意兩個(gè)不相同的元素,,都有,試求集合中元素個(gè)數(shù)的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義變換將平面內(nèi)的點(diǎn)變換到平面內(nèi)的點(diǎn);若曲線經(jīng)變換后得到曲線,曲線經(jīng)變換后得到曲線,,依次類推,曲線經(jīng)變換后得到曲線,當(dāng)時(shí),記曲線、軸正半軸的交點(diǎn)為,某同學(xué)研究后認(rèn)為曲線具有如下性質(zhì):①對(duì)任意的,曲線都關(guān)于原點(diǎn)對(duì)稱;②對(duì)任意的,曲線恒過點(diǎn);③對(duì)任意的,曲線均在矩形(含邊界)的內(nèi)部,其中的坐標(biāo)為;④記矩形的面積為,則;其中所有正確結(jié)論的序號(hào)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=ex+1-alnax+aa>0).

(1)當(dāng)a=1時(shí),求曲線y=fx)在點(diǎn)(1,f(1))處的切線方程;

(2)若關(guān)于x的不等式fx)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知AB是平面內(nèi)一條長度為4的線段,P是平面內(nèi)一動(dòng)點(diǎn),P可以與A,B重合.當(dāng)PAB不重合時(shí),直線PAPB的斜率之積為,

1)建立適當(dāng)?shù)淖鴺?biāo)系,求動(dòng)點(diǎn)P的軌跡方程;

2)一個(gè)矩形的四條邊與(1)中的軌跡M均相切,求該矩形面積的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知直線l的參數(shù)方程為t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=4sinθ+).

(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;

(2)若直線l與曲線C交于M,N兩點(diǎn),求△MON的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC,A,B,C所對(duì)的邊分別為a,b,c.滿足2acosC+bcosC+ccosB=0.

()求角C的大。

()a=2,ABC的面積為,求C的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列滿足

(1)求的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案