A. | $\frac{{{n^2}+n+1}}{2}$ | B. | $\frac{{{n^2}+n+2}}{2}$ | C. | $\frac{{{n^2}+n+3}}{2}$ | D. | $\frac{{{n^2}+n+4}}{2}$ |
分析 當(dāng)n≥2時,利用an-a1=(an-an-1)+(an-1-an-2)+…+(a2-a1)計算可知an=$\frac{{n}^{2}+n+4}{2}$(n≥2),進(jìn)而驗證當(dāng)n=1時是否成立即可.
解答 解:∵a1=3,an+1=an+n+1,
∴an+1-an=n+1,
∴當(dāng)n≥2時,an-a1=(an-an-1)+(an-1-an-2)+…+(a2-a1)
=n+(n-1)+…+2
=$\frac{(n-1)(n+2)}{2}$,
∴an=$\frac{{n}^{2}+n-2}{2}$+3=$\frac{{n}^{2}+n+4}{2}$(n≥2),
又∵a1=3滿足上式,
∴an=$\frac{{n}^{2}+n+4}{2}$,
故選:D.
點評 本題考查數(shù)列的通項,考查并項相加法,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2046 | B. | 2047 | C. | 2048 | D. | 2049 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=cosx | B. | y=e-x | C. | y=-x2+1 | D. | y=lg|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 24 | C. | 16 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com