【題目】為了調節(jié)高三學生學習壓力,某校高三年級舉行了拔河比賽,在賽前三位老師對前三名進行了預測,于是有了以下對話:老師甲:“7班男生比較壯,7班肯定得第一名”.老師乙:“我覺得14班比15班強,14班名次會比15班靠前”.老師丙:“我覺得7班能贏15班”.最后老師丁去觀看完了比賽,回來后說:“確實是這三個班得了前三名,且無并列,但是你們三人中只有一人預測準確”.那么,獲得一、二、三名的班級依次為( )
A.7班、14班、15班B.14班、7班、15班
C.14班、15班、7班D.15班、14班、7班
科目:高中數(shù)學 來源: 題型:
【題目】分形幾何是美籍法國數(shù)學家芒德勃羅在20世紀70年代創(chuàng)立的一門數(shù)學新分支,其中的“謝爾賓斯基”圖形的作法是:先作一個正三角形,挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形),然后在剩下的每個小正三角形中又挖去一個“中心三角形”.按上述方法無限連續(xù)地作下去直到無窮,最終所得的極限圖形稱為“謝爾賓斯基”圖形(如圖所示),按上述操作7次后,“謝爾賓斯基”圖形中的小正三角形的個數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應,全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯誤的是( )
A.月下旬新增確診人數(shù)呈波動下降趨勢
B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)
C.月日至月日新增確診人數(shù)波動最大
D.我國新型冠狀病毒肺炎累計確診人數(shù)在月日左右達到峰值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax3﹣ax﹣xlnx.其中a∈R.
(Ⅰ)若,證明:f(x)≥0;
(Ⅱ)若xe1﹣x≥1﹣f(x)在x∈(1,+∞)上恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設有編號分別為1,2,3,4,5,6,7,8的八個小球和編號為1,2,3,4,5,6,7,8的八個盒子.現(xiàn)將這八個小球隨機放入八個盒子內,要求每個盒子內放一個球,要求編號為偶數(shù)的小球在編號為偶數(shù)的盒子內,且至少有四個小球在相同編號的盒子內,則一共有______種投放方法.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:若數(shù)列滿足所有的項均由,1構成且其中有個,1有個,則稱為“數(shù)列”.
(1),,為“數(shù)列”中的任意三項,則使得的取法有多少種?
(2),,為“數(shù)列”中的任意三項,則存在多少正整數(shù)對使得,且的概率為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓Q:(x+2)2+(y-2)2=1,拋物線C:y2=4x的焦點為F,過F的直線l與拋物線C交于A,B兩點,過F且與l垂直的直線l'與圓Q有交點.
(1)求直線l'的斜率的取值范圍;
(2)求△AOB面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某印刷廠為了研究印刷單冊書籍的成本(單位:元)與印刷冊數(shù)(單位:千冊)之間的關系,在印制某種書籍時進行了統(tǒng)計,相關數(shù)據(jù)見下表.
印刷冊數(shù)(千冊) | 2 | 3 | 4 | 5 | 8 |
單冊成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據(jù)以上數(shù)據(jù),技術人員分別借助甲、乙兩種不同的回歸模型,得到了兩個回歸方程,方程甲:,方程乙:.
(1)為了評價兩種模型的擬合效果,完成以下任務.
(i)完成下表(計算結果精確到0.1);
印刷冊數(shù)(千冊) | 2 | 3 | 4 | 5 | 8 | |
單冊成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計值 | 2.4 | 2.1 | 1.6 | ||
殘差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估計值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
(ii)分別計算模型甲與模型乙的殘差平方和和,并通過比較,的大小,判斷哪個模型擬合效果更好.
(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進行二次印刷.根據(jù)市場調查,新需求量為10千冊,若印刷廠以每冊5元的價格將書籍出售給訂貨商,試估計印刷廠二次印刷獲得的利潤.(按(1)中擬合效果較好的模型計算印刷單冊書的成本)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,在中,,為的中點,四邊形是等腰梯形,,.
(Ⅰ)求異面直線與所成角的正弦值;
(Ⅱ)求證:平面平面;
(Ⅲ)求直線與平面所成角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com