【題目】已知函數(shù)f(x)=ax3﹣ax﹣xlnx.其中a∈R.
(Ⅰ)若,證明:f(x)≥0;
(Ⅱ)若xe1﹣x≥1﹣f(x)在x∈(1,+∞)上恒成立,求a的取值范圍.
【答案】(Ⅰ)詳見解析;(Ⅱ)[).
【解析】
(Ⅰ)先對函數(shù)求導(dǎo),然后結(jié)合導(dǎo)數(shù)可求函數(shù)的單調(diào)性,進而可求的范圍,即可得證;
(Ⅱ)由已知代入整理可得在上恒成立,構(gòu)造函數(shù),,按照、討論,結(jié)合導(dǎo)數(shù)分別分析函數(shù)的特征性質(zhì),即可得解.
(Ⅰ)證明:函數(shù)的定義域,
當時,,
令,則,
當時,,函數(shù)單調(diào)遞減;
時,,函數(shù)單調(diào)遞增;
故,
又,所以;
(Ⅱ)若在上恒成立,
則在上恒成立,
即在上恒成立,
令,,
令,則,則,
所以,可得,
∵,
(i)當時,,在上單調(diào)遞減,故,
此時不成立;
(ii)當時,由可得,,
當即時,在上單調(diào)遞減,在上單調(diào)遞增,
∴,則在上,不成立;
當即時,在上單調(diào)遞增,
令,
則,
令,
∵,
故在上單調(diào)遞增,,
則,符合題意;
綜上,a的范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,橢圓的離心率為,直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)過原點的直線與橢圓交于兩點(不是橢圓的頂點),點在橢圓上,且,直線與軸軸分別交于兩點.
①設(shè)直線斜率分別為,證明存在常數(shù)使得,并求出的值;
②求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 平面, , , , , 為線段上的點.
(1)證明: 平面;
(2)若是的中點,求與平面所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的圖象上存在兩點,使得是以為直角頂點的直角三角形(其中為坐標原點),且斜邊的中點恰好在軸上,則實數(shù)的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)當時,證明:函數(shù)有兩個零點;
(Ⅲ)若函數(shù)有兩個不同的極值點,記作,且,證明(為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在貫徹中共中央、國務(wù)院關(guān)于精準扶貧政策的過程中,某單位在某市定點幫扶甲、乙兩村各50戶貧困戶為了做到精準幫扶,工作組對這100戶村民的年收入情況、勞動能力情況、子女受教育情況、危舊房情況、患病情況等進行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標x,將指標x按照分成五組,得到如圖所示的頻率分布直方圖.
規(guī)定若,則認定該戶為“絕對貧困戶”,否則認定該戶為“相對貧困戶”,且當時,認定該戶為“低收入戶”;當時,認定該戶為“亟待幫助戶”,已知此次調(diào)查中甲村的“絕對貧困戶”占甲村貧困戶的24%.
(1)完成下面的列聯(lián)表,并判斷是否有90%的把握認為絕對貧困戶數(shù)與村落有關(guān);
甲村 | 乙村 | 總計 | |
絕對貧困戶 | |||
相對貧困戶 | |||
總計 |
(2)若兩村“低收入戶”中乙村“低收入戶”占比為,兩村“亟待幫助戶”中乙村“亟待幫助戶”占比為,且乙村貧困指標在上的戶數(shù)成等差數(shù)列,試估計乙村貧困指標x的平均值.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)節(jié)高三學(xué)生學(xué)習壓力,某校高三年級舉行了拔河比賽,在賽前三位老師對前三名進行了預(yù)測,于是有了以下對話:老師甲:“7班男生比較壯,7班肯定得第一名”.老師乙:“我覺得14班比15班強,14班名次會比15班靠前”.老師丙:“我覺得7班能贏15班”.最后老師丁去觀看完了比賽,回來后說:“確實是這三個班得了前三名,且無并列,但是你們?nèi)酥兄挥幸蝗祟A(yù)測準確”.那么,獲得一、二、三名的班級依次為( )
A.7班、14班、15班B.14班、7班、15班
C.14班、15班、7班D.15班、14班、7班
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓 的左右焦點分別為的、,離心率為;過拋物線焦點的直線交拋物線于、兩點,當時, 點在軸上的射影為。連結(jié)并延長分別交于、兩點,連接; 與的面積分別記為, ,設(shè).
(Ⅰ)求橢圓和拋物線的方程;
(Ⅱ)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) (k為常數(shù))
(1)當時,求函數(shù)的最值;
(2)若,討論函數(shù)的單調(diào)性
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com