【題目】在貫徹中共中央、國(guó)務(wù)院關(guān)于精準(zhǔn)扶貧政策的過(guò)程中,某單位在某市定點(diǎn)幫扶甲、乙兩村各50戶貧困戶為了做到精準(zhǔn)幫扶,工作組對(duì)這100戶村民的年收入情況、勞動(dòng)能力情況、子女受教育情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo)x,將指標(biāo)x按照分成五組,得到如圖所示的頻率分布直方圖.

規(guī)定若,則認(rèn)定該戶為絕對(duì)貧困戶,否則認(rèn)定該戶為相對(duì)貧困戶,且當(dāng)時(shí),認(rèn)定該戶為低收入戶;當(dāng)時(shí),認(rèn)定該戶為亟待幫助戶,已知此次調(diào)查中甲村的絕對(duì)貧困戶占甲村貧困戶的24%.

1)完成下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為絕對(duì)貧困戶數(shù)與村落有關(guān);

甲村

乙村

總計(jì)

絕對(duì)貧困戶

相對(duì)貧困戶

總計(jì)

2)若兩村低收入戶中乙村低收入戶占比為,兩村亟待幫助戶中乙村亟待幫助戶占比為,且乙村貧困指標(biāo)在上的戶數(shù)成等差數(shù)列,試估計(jì)乙村貧困指標(biāo)x的平均值.

附:,其中.

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

【答案】1)見(jiàn)解析,沒(méi)有90%的把握認(rèn)為絕對(duì)貧困戶數(shù)與村落有關(guān).20.62

【解析】

1)列出列聯(lián)表,計(jì)算,根據(jù)臨界值表得出結(jié)論即可;

2)由題意計(jì)算乙村貧困指標(biāo)在上的戶數(shù),根據(jù)頻率分布直方圖計(jì)算均值即可.

1)由題意可知,甲村中絕對(duì)貧困戶(戶),

甲、乙兩村的絕對(duì)貧困戶有(戶),可得出如下列聯(lián)表:

甲村

乙村

總計(jì)

絕對(duì)貧困戶

12

18

30

相對(duì)貧困戶

38

32

70

總計(jì)

50

50

100

.

故沒(méi)有90%的把握認(rèn)為絕對(duì)貧困戶數(shù)與村落有關(guān).

2)由頻率分布直方圖可知,兩村的低收入戶共有(戶),

所以乙村低收入戶10.

兩村的亟待幫助戶(戶),所以乙村亟待幫助戶3.

因?yàn)橐掖遑毨е笜?biāo)在上的戶數(shù)成等差數(shù)列,

所以乙村貧困指標(biāo)在上的戶數(shù)分別分3,6,9,

所以可估計(jì)乙村貧困指標(biāo)x的平均值

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是坐標(biāo)原點(diǎn),過(guò)的直線分別交拋物線、兩點(diǎn),直線與過(guò)點(diǎn)平行于軸的直線相交于點(diǎn),過(guò)點(diǎn)與此拋物線相切的直線與直線相交于點(diǎn).則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若函數(shù)上存在兩個(gè)極值點(diǎn).

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面,點(diǎn)分別為的中點(diǎn).

(Ⅰ)求證:平面

(Ⅱ)求二面角的正弦值;

(Ⅲ)若為線段上的點(diǎn),且直線與平面所成的角為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=ax3axxlnx.其中aR

(Ⅰ)若,證明:fx)≥0

(Ⅱ)若xe1x1fx)在x∈(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)經(jīng)過(guò)點(diǎn)的直線與拋物線相交于、兩點(diǎn),經(jīng)過(guò)點(diǎn)的直線與拋物線相切于點(diǎn).

1)當(dāng)時(shí),求的取值范圍;

2)問(wèn)是否存在直線,使得成立,若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若數(shù)列滿足所有的項(xiàng)均由,1構(gòu)成且其中個(gè),1個(gè),則稱為“數(shù)列”.

1,為“數(shù)列”中的任意三項(xiàng),則使得的取法有多少種?

2,,為“數(shù)列”中的任意三項(xiàng),則存在多少正整數(shù)對(duì)使得,且的概率為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B為橢圓C短軸的上、下頂點(diǎn),P為直線ly2上一動(dòng)點(diǎn),連接PA并延長(zhǎng)交橢圓于點(diǎn)M,連接PB交橢圓于點(diǎn)N,已知直線MA,MB的斜率之積恒為.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)若直線MNx軸平行,求直線MN的方程;

3)求四邊形AMBN面積的最大值,并求對(duì)應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在四棱錐中,底面為等腰梯形,,,,點(diǎn)在底面的投影恰好為的交點(diǎn),.

1)證明:;

2)若的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案