【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標原點為極點,x軸的正半軸為極軸建建立極坐標系,曲線C的極坐標方程為

求曲線C的直角坐標方程與直線l的極坐標方程;

若直線與曲線C交于點不同于原點,與直線l交于點B,求的值.

【答案】(1):;:;(2).

【解析】

(1) 先根據(jù)極坐標與直角坐標的對應(yīng)關(guān)系得出極坐標方程C,將直線參數(shù)方程化為普通方程;(2) 分別代入直線l和曲線C的極坐標方程求出A,B到原點的距離,作差得出|AB|.

(1)∵,∴

∴曲線C的直角坐標方程為

∵直線l的參數(shù)方程為(t為參數(shù)),∴

∴直線l的極坐標方程為

(2)將代入曲線C的極坐標方程

∴A點的極坐標為

代入直線l的極坐標方程得,解得

∴B點的極坐標為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】偶函數(shù)fx)(x∈R)滿足:f﹣4=f1=0,且在區(qū)間[0,3][3+∞)上分別遞減和遞增,則不等式x3fx)<0的解集為( )

A.﹣∞﹣44,+∞

B.﹣4﹣114

C.﹣∞,﹣4﹣10

D.﹣∞,﹣4﹣101,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(Ⅰ)當時,求的極值;

(Ⅱ)若有2個不同零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年世界海洋日暨全國海洋宣傳日主場活動在海南三亞舉行,此次活動主題為“珍惜海洋資源保護海洋生物多樣性”,旨在進一步提高公眾對節(jié)約利用海洋資源.保護海洋生物多樣性的認識,為保護藍色家園做出貢獻.聯(lián)合國于第63屆聯(lián)合國大會上將每年的68日確定為“世界海洋日”,為了響應(yīng)世界海洋日的活動,201912月北京某高校行政主管部門從該大學(xué)隨機抽取部分大學(xué)生進行一次海洋知識測試,并根據(jù)被測驗學(xué)生的成績(得分都在區(qū)間內(nèi))繪制成如圖所示的頻率分布直方圖.

若學(xué)生的得分成績不低于80分的認為是“成績優(yōu)秀”現(xiàn)在從認為“成績優(yōu)秀”的學(xué)生中根據(jù)原有分組按照分層抽樣的方法抽取10人進行獎勵,最后再從這10人中隨機選取3人作為優(yōu)秀代表發(fā)言.

1)求所抽取的3人不屬于同一組的概率;

2)記這3人中,為測試成績在內(nèi)的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)().

(1)判斷函數(shù)的奇偶性并說明理由;

(2)是否存在實數(shù),使得當的定義域為,值域為?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點為F ,已知點A ,B 為拋物線上的兩個動點,且滿足.過弦AB 的中點M 作拋物線準線的垂線MN ,垂足為N,則 的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),點為一定點,直線分別與函數(shù)的圖象和軸交于點,,記的面積為

(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當時,若,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.現(xiàn)有如下兩種圖象變換方案:

方案1:將函數(shù)的圖像上所有點的橫坐標變?yōu)樵瓉淼囊话耄v坐標不變,再將所得圖象向左平移個單位長度;

方案2:將函數(shù)的圖象向左平移個單位長度,再將所得圖象上所有點的橫坐標變?yōu)樵瓉淼囊话耄v坐標不變.

請你從中選擇一種方案,確定在此方案下所得函數(shù)的解析式,并解決如下問題:

1)畫出函數(shù)在長度為一個周期的閉區(qū)間上的圖象;

2)請你研究函數(shù)的定義域,值域,周期性,奇偶性以及單調(diào)性,并寫出你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù)是定義域為的奇函數(shù).

1)求實數(shù)的值;

2)若,不等式上恒成立,求實數(shù)的取值范圍;

3)若,且函數(shù)上最小值為,求的值.

查看答案和解析>>

同步練習冊答案