【題目】某商品在近天內(nèi)每件的銷售價格(元)與時間(天)的函數(shù)關(guān)系是:
,該商品的日銷售量(件)與時間(天)的函數(shù)關(guān)系是,求這種商品的日銷售金額的最大值,并指出日銷售金額最大的一天是天中的第幾天?(商品的日銷售金額=該商品的銷售價格日銷售量)
科目:高中數(shù)學 來源: 題型:
【題目】心理學家通過研究學生的學習行為發(fā)現(xiàn);學生的接受能力與老師引入概念和描述問題所用的時間相關(guān),教學開始時,學生的興趣激增,學生的興趣保持一段較理想的狀態(tài),隨后學生的注意力開始分散,分析結(jié)果和實驗表明,用表示學生掌握和接受概念的能力, x表示講授概念的時間(單位:min),可有以下的關(guān)系:
(1)開講后第5min與開講后第20min比較,學生的接受能力何時更強一些?
(2)開講后多少min學生的接受能力最強?能維持多少時間?
(3)若一個新數(shù)學概念需要55以上(包括55)的接受能力以及13min時間,那么老師能否在學生一直達到所需接受能力的狀態(tài)下講授完這個概念?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線 =1(a>0,b>0)上一點C,過雙曲線中心的直線交雙曲線于A,B兩點,記直線AC,BC的斜率分別為k1 , k2 , 當 +ln|k1|+ln|k2|最小時,雙曲線離心率為( )
A.
B.
C. +1
D.2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,⊙O1與⊙O2外切于點P,從⊙O1上點A作的切線AB,切點為B,連AP(不過O1)并延長與⊙O2交于點C.
(1)求證:AO1∥CO2;
(2)若 ,求⊙O1的半徑與⊙O2的半徑之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)證明:PB∥平面AEC;
(2)設(shè)二面角D﹣AE﹣C為60°,AP=1,AD= ,求三棱錐E﹣ACD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,半圓C的極坐標方程為ρ=2cosθ,θ∈[0, ]
(1)求C的參數(shù)方程;
(2)設(shè)點D在半圓C上,半圓C在D處的切線與直線l:y= x+2垂直,根據(jù)(1)中你得到的參數(shù)方程,求直線CD的傾斜角及D的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分別是PA,BC的中點,且AD=2PD=2.
(1)求證:MN∥平面PCD;
(2)求證:平面PAC⊥平面PBD;
(3)求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點為,,離心率.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點,線段的垂直平分線交軸于點,當變化時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量=(cosθ,sinθ),=(cosβ,sinβ).
(1)若,求的值;
(2)若記f(θ)=,θ∈[0,].當1≤λ≤2時,求f(θ)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com