【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)證明:PB∥平面AEC;
(2)設二面角D﹣AE﹣C為60°,AP=1,AD= ,求三棱錐E﹣ACD的體積.
【答案】
(1)證明:連接BD交AC于O點,連接EO,
∵O為BD中點,E為PD中點,
∴EO∥PB,(2分)
EO平面AEC,PB平面AEC,所以PB∥平面AEC;(6分)
(2)解:延長AE至M連結DM,使得AM⊥DM,
∵四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,
∴CD⊥平面AMD,
∵二面角D﹣AE﹣C為60°,
∴∠CMD=60°,
∵AP=1,AD= ,∠ADP=30°,
∴PD=2,
E為PD的中點.AE=1,
∴DM= ,
CD= = .
三棱錐E﹣ACD的體積為: = = .
【解析】(1)連接BD交AC于O點,連接EO,只要證明EO∥PB,即可證明PB∥平面AEC;(2)延長AE至M連結DM,使得AM⊥DM,說明∠CMD=60°,是二面角的平面角,求出CD,即可三棱錐E﹣ACD的體積.
【考點精析】通過靈活運用直線與平面平行的判定,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=cos2x﹣sin2xsinφ﹣2cos2xsin2 (0<φ< )的圖象的一個對稱中心為( ,0),則下列說法不正確的是( )
A.直線x= π是函數(shù)f(x)的圖象的一條對稱軸
B.函數(shù)f(x)在[0, ]上單調(diào)遞減
C.函數(shù)f(x)的圖象向右平移 個單位可得到y(tǒng)=cos2x的圖象
D.函數(shù)f(x)在x∈[0, ]上的最小值為﹣1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某地有三家工廠,分別位于矩形ABCD 的頂點A、B 及CD的中點P 處,已知AB=20km,CB =10km ,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD 的區(qū)域上(含邊界),且與A、B等距離的一點O處建造一個污水處理廠,并鋪設排污管道AO、BO、OP ,設排污管道的總長度為km.
(1)按下列要求寫出函數(shù)關系式:①設∠BAO= (rad),將表示成的函數(shù);②設OP (km) ,將表示成的函數(shù).
(2)請選用(1)中的一個函數(shù)關系式,確定污水處理廠的位置,使鋪設的排污管道總長度最短.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,以O為原點,以x軸正半軸建立極坐標系,曲線C的極坐標方程為ρ2﹣4ρsinθ+3=0,直線l的參數(shù)方程為 ,(t為參數(shù)).
(1)寫出曲線C和直線l的直角坐標方程;
(2)若點A,B是曲線C上的兩動點,點P是直線l上一動點,求∠APB的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商品在近天內(nèi)每件的銷售價格(元)與時間(天)的函數(shù)關系是:
,該商品的日銷售量(件)與時間(天)的函數(shù)關系是,求這種商品的日銷售金額的最大值,并指出日銷售金額最大的一天是天中的第幾天?(商品的日銷售金額=該商品的銷售價格日銷售量)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,點列{An}、{Bn}分別在某銳角的兩邊上,且|AnAn+1|=|An+1An+2|,An≠An+1 , n∈N* , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N* , (P≠Q(mào)表示點P與Q不重合)若dn=|AnBn|,Sn為△AnBnBn+1的面積,則( 。
A.{Sn}是等差數(shù)列
B.{Sn2}是等差數(shù)列
C.{dn}是等差數(shù)列
D.{dn2}是等差數(shù)列
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45,點E、F分別為棱AB、PD的中點.
(1)求證:AF∥平面PCE;
(2)求三棱錐C-BEP的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x+1|﹣|2x﹣3|.
(1)在圖中畫出y=f(x)的圖象;
(2)求不等式|f(x)|>1的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com