【題目】為了慶祝中華人民共和國(guó)成立周年,某車間內(nèi)舉行生產(chǎn)比賽,由甲乙兩組內(nèi)各隨機(jī)選取名技工,在單位時(shí)間生產(chǎn)同一種零件,其生產(chǎn)的合格零件數(shù)的莖葉圖如下:
已知兩組所選技工生產(chǎn)的合格零件的平均數(shù)均為.
(1)分別求出的值;
(2)分別求出甲乙兩組技工在單位時(shí)間內(nèi)加工的合格零件的方差和,并由此估計(jì)兩組技工的生產(chǎn)水平;
(3)若單位時(shí)間內(nèi)生產(chǎn)的合格零件個(gè)數(shù)不小于平均數(shù)的技工即為“生產(chǎn)能手”,根據(jù)以上數(shù)據(jù),能否認(rèn)為該車間50%以上的技工都是生產(chǎn)能手?
(注:方差,其中為數(shù)據(jù)的平均數(shù)).
【答案】(1),.(2)答案見解析(3)答案見解析
【解析】
(1)根據(jù)兩組所選技工生產(chǎn)的合格零件的平均數(shù)均為,即可求出,;
(2)根據(jù)方差公式,即可求出,,可得,根據(jù)方差的含義,即可確定結(jié)果;
(3)因?yàn)閮山M技工單位時(shí)間內(nèi)生產(chǎn)的合格零件個(gè)數(shù)不小于的有個(gè),可得其頻率為,根據(jù)題意,即可求出結(jié)果.
(1)由
可得,
由
可得,
,.
(2)因?yàn)?/span>,
,
因?yàn)?/span>,
所以估計(jì)兩組技工的平均水平一致,而甲組技工的生產(chǎn)水平的穩(wěn)定性要較乙組更好一些.
(3)因?yàn)閮山M技工單位時(shí)間內(nèi)生產(chǎn)的合格零件個(gè)數(shù)不小于的有個(gè),其頻率為,
所以可以估計(jì)該車間以上的技工都是生產(chǎn)能手.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)科大學(xué)實(shí)習(xí)小組為研究實(shí)習(xí)地晝夜溫差與患感冒人數(shù)之間的關(guān)系,分別到當(dāng)?shù)貧庀蟛块T和某醫(yī)院抄錄了1月份至3月份每月5日、20日的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:
日期 | 1月5日 | 1月20日 | 2月5日 | 2月20日 | 3月5日 | 3月20日 |
晝夜溫差() | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)(人) | 22 | 25 | 29 | 26 | 16 | 12 |
該小組確定的研究方案是:先從這六組數(shù)據(jù)中隨機(jī)選取4組數(shù)據(jù)求線性回歸方程,再用剩余的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求剩余的2組數(shù)據(jù)都是20日的概率;
(2)若選取的是1月20日,2月5日,2月20日,3月5日四組數(shù)據(jù).
①請(qǐng)根據(jù)這四組數(shù)據(jù),求出關(guān)于的線性回歸方程(,用分?jǐn)?shù)表示);
②若某日的晝夜溫差為,預(yù)測(cè)當(dāng)日就診人數(shù)約為多少人?
附參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),其中.若對(duì)一切恒成立,則①;②;③既不是奇函數(shù)也不是偶函數(shù);④的單調(diào)遞增區(qū)間是;⑤存在經(jīng)過點(diǎn)的直線與函數(shù)的圖像不相交.以上結(jié)論正確的是________________.(寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品的三個(gè)質(zhì)量指標(biāo)分別為x, y, z, 用綜合指標(biāo)S =" x" + y + z評(píng)價(jià)該產(chǎn)品的等級(jí). 若S≤4, 則該產(chǎn)品為一等品. 現(xiàn)從一批該產(chǎn)品中, 隨機(jī)抽取10件產(chǎn)品作為樣本, 其質(zhì)量指標(biāo)列表如下:
產(chǎn)品編號(hào) | A1 | A2 | A3 | A4 | A5 |
質(zhì)量指標(biāo)(x, y, z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
產(chǎn)品編號(hào) | A6 | A7 | A8 | A9 | A10 |
質(zhì)量指標(biāo)(x, y, z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(Ⅰ) 利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;
(Ⅱ) 在該樣品的一等品中, 隨機(jī)抽取兩件產(chǎn)品,
(1) 用產(chǎn)品編號(hào)列出所有可能的結(jié)果;
(2) 設(shè)事件B為 “在取出的2件產(chǎn)品中, 每件產(chǎn)品的綜合指標(biāo)S都等于4”, 求事件B發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某投資公司計(jì)劃投資、兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),產(chǎn)品的利潤(rùn)與投資量x成正比例,其關(guān)系如圖1,產(chǎn)品的利潤(rùn)與投資量x的算術(shù)平方根成正比例,其關(guān)系如圖2;(利潤(rùn)與投資量單位:萬元)
(1)分別將、兩產(chǎn)品的利潤(rùn)表示為投資量的函數(shù)關(guān)系式;
(2)該公司已有20萬元資金,并全部投入、兩種產(chǎn)品中,問:怎樣分配這20萬元投資,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南北朝時(shí)代的偉大數(shù)學(xué)家祖暅在數(shù)學(xué)上有突出貢獻(xiàn),他在實(shí)踐的基礎(chǔ)上提出祖暅原理:“冪勢(shì)既同,則積不容異”.其含義是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等,如圖,夾在兩個(gè)平行平面之間的兩個(gè)幾何體的體積分別為,被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面的面積分別為,則“總相等”是“相等”的( )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD中平面PAD⊥平面ABCD,AB∥CD,AB⊥AD,M為AD中點(diǎn),PA=PD,AD=AB=2CD=2.
(1)求證:平面PMB⊥平面PAC;
(2)求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,橢圓以的長(zhǎng)軸為短軸,且兩個(gè)橢圓的離心率相同,設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A、B分別在橢圓、上,若,則直線AB的斜率k為( ).
A.1B.-1C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某健康社團(tuán)為調(diào)查居民的運(yùn)動(dòng)情況,統(tǒng)計(jì)了某小區(qū)100名居民平均每天的運(yùn)動(dòng)時(shí)長(zhǎng)(單位:小時(shí))并根據(jù)統(tǒng)計(jì)數(shù)據(jù)分為六個(gè)小組(所調(diào)查的居民平均每天運(yùn)動(dòng)時(shí)長(zhǎng)均在內(nèi)),得到的頻率分布直方圖如圖所示.
(1)求出圖中的值,并估計(jì)這名居民平均每天運(yùn)動(dòng)時(shí)長(zhǎng)的平均值及中位數(shù)(同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替);
(2)為了分析出該小區(qū)居民平均每天的運(yùn)動(dòng)量與職業(yè)、年齡等的關(guān)系,該社團(tuán)按小組用分層抽樣的方法抽出20名居民進(jìn)一步調(diào)查,試問在時(shí)間段內(nèi)應(yīng)抽出多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com