設等差數(shù)列是遞減數(shù)列,且=120,=18,則數(shù)列的通項公式是

[  ]

A2n4

B.-2n14

C2n8

D.-2n16

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是首項a1=
1
33
,公比q=
1
33
的等比數(shù)列,設bn+15log3an=t,常數(shù)t∈N*,數(shù)列{cn}滿足cn=anbn
(1)求證:{bn}是等差數(shù)列;
(2)若{cn}是遞減數(shù)列,求t的最小值;
(3)是否存在正整數(shù)k,使ck,ck+1,ck+2重新排列后成等比數(shù)列?若存在,求k,t的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是遞減的等差數(shù)列,前三項的和是15,前三項的積是105,當該數(shù)列的前n項和最大時,n等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•天津)已知首項為
3
2
的等比數(shù)列{an}不是遞減數(shù)列,其前n項和為Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設Tn=Sn-
1
Sn
(n∈N*)
,求數(shù)列{Tn}的最大項的值與最小項的值.

查看答案和解析>>

科目:高中數(shù)學 來源:最新名師點評測試卷 高一數(shù)學 第一冊上 題型:013

設等差數(shù)列是遞減數(shù)列,且=120,=18,則數(shù)列的通項公式是

[  ]

A.2n-4
B.-2n+14
C.2n+8
D.-2n+16

查看答案和解析>>

同步練習冊答案