【題目】已知橢圓過點,焦距長,過點的直線交橢圓,兩點.

(1)求橢圓的方程;

(2)在軸上是否存在一點,使得為定值.

【答案】(1)(2)存在點符合題意

【解析】

(1)首先可通過焦距為計算出的值,再將點代入橢圓方程中即可計算出的值,最后得出橢圓的方程;

(2)首先可設(shè)點存在,然后設(shè)出直線的方程以及、兩點坐標(biāo),然后聯(lián)立直線方程與橢圓方程得出的值,然后對進行化簡,最后即可求出點的坐標(biāo)以及定值。

(1)由焦距為可以得出

然后將代入方程可得,

故橢圓方程為;

(2)假設(shè)存在點,使為定值,

若直線的斜率不為0時,設(shè)直線交橢圓于,,

可得:,,,

,

,

要使上式為定值,則,即,此時

而當(dāng)點,且直線的斜率為0時,,

故在軸上存在點,使得為定值,且等于。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若內(nèi)單調(diào)遞減,求實數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個極值點分別為,,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,,

(1)證明:;

(2)若,四面體的體積為2,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點,左右焦點分別為,且橢圓經(jīng)過點.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過橢圓的右頂點作兩條相互垂直的直線,分別與橢圓交于點(均異于點),求證:直線過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個說法:

①殘差點分布的帶狀區(qū)域的寬度越窄相關(guān)指數(shù)越小

②在刻畫回歸模型的擬合效果時,相關(guān)指數(shù)的值越大,說明擬合的效果越好;

③在回歸直線方程中,當(dāng)解釋變量每增加一個單位時,預(yù)報變量平均增加個單位;

④對分類變量,若它們的隨機變量的觀測值越小,則判斷“有關(guān)系”的把握程度越大.

其中正確的說法是

A. ①④B. ②④C. ①③D. ②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“勾股定理”在西方被稱為“畢達哥拉斯定理”,三國時期吳國的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細證明.如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形,若直角三角形的直角邊的邊長分別是3和4,在繪圖內(nèi)隨機取一點,則此點取自小正方形的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)點,直線與曲線交于不同的兩點、,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為比較甲、乙兩名高中學(xué)生的數(shù)學(xué)素養(yǎng),對課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進行指標(biāo)測驗(指標(biāo)值滿分為100分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達圖,則下面敘述不正確的是(

A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng)

C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)學(xué)運算最強

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,給定由個點組成的正三角形點陣。在其中任意取三個點,以這三點為頂點構(gòu)成的正三角形的概率為__________。

查看答案和解析>>

同步練習(xí)冊答案