【題目】已知函數(shù),.

1)討論函數(shù)的單調(diào)性;

2)若存在直線,使得對任意的,,對任意的,求的取值范圍.

【答案】1)當(dāng)時,上單調(diào)遞增;當(dāng)時,上單調(diào)遞增,在上單調(diào)遞減;(2.

【解析】

(1)對函數(shù)求導(dǎo),分兩種情況討論即可;

(2)先由可轉(zhuǎn)化為二次不等式的恒成立問題,然后構(gòu)造函數(shù),轉(zhuǎn)化為對任意的,恒成立問題,即可求解.

(1)函數(shù)的定義域為.

i)若,則;

ii)若,則由,由;

綜上:當(dāng)時,上單調(diào)遞增;

當(dāng)時,上單調(diào)遞增,在上單調(diào)遞減.

2)設(shè)存在直線滿足題意.

i)由,即對任意的都成立,得,所以

ii)令,

,

①若,則單調(diào)遞增,,不合題意;

②若,則上單調(diào)遞增,在上單調(diào)遞減,

所以

所以,即,

由(i)得,

,

,,

,所以單調(diào)遞增,

又因為,所以是單調(diào)遞減,是單調(diào)遞減,所以,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點為,左頂點為A,右頂點B在直線上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)點P是橢圓C上異于AB的點,直線交直線于點,當(dāng)點運動時,判斷以為直徑的圓與直線PF的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=2sinxxcosxxf′x)為fx)的導(dǎo)數(shù).

1)證明:f′x)在區(qū)間(0,π)存在唯一零點;

2)若x[0,π]時,fxax,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,底面為等腰直角三角形,,是側(cè)棱上的點.

1)若,證明:的中點;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】時至21世紀(jì).環(huán)境污染已經(jīng)成為世界各國面臨的一大難題,其中大氣污染是目前城市急需應(yīng)對的一項課題.某市號召市民盡量減少開車出行以綠色低碳的出行方式支持節(jié)能減排.原來天天開車上班的王先生積極響應(yīng)政府號召,準(zhǔn)備每天從騎自行車和開小車兩種出行方式中隨機選擇一種方式出行.從即日起出行方式選擇規(guī)則如下:第一天選擇騎自行車方式上班,隨后每天用一次性拋擲6枚均勻硬幣的方法確定出行方式,若得到的正面朝上的枚數(shù)小于4,則該天出行方式與前一天相同,否則選擇另一種出行方式.

1)求王先生前三天騎自行車上班的天數(shù)X的分布列;

2)由條件概率我們可以得到概率論中一個很重要公式——全概率公式.其特殊情況如下:如果事件相互對立并且,則對任一事件B.設(shè)表示事件n天王先生上班選擇的是騎自行車出行方式的概率.

①用表示;

②王先生的這種選擇隨機選擇出行方式有沒有積極響應(yīng)該市政府的號召,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某次考試之后,班主任從全班同學(xué)中隨機抽取一個容量為8的樣本,他們的數(shù)學(xué)、物理成績(單位:分)對應(yīng)如下表,對應(yīng)散點圖如圖所示:

學(xué)生編號

1

2

3

4

5

6

7

8

數(shù)學(xué)成績

60

65

70

75

80

85

90

95

物理成績

72

77

80

84

88

90

93

95

根據(jù)以上信息,則下列結(jié)論:

①根據(jù)散點圖,可以判斷數(shù)學(xué)成績與物理成績具有線性相關(guān)關(guān)系;

②根據(jù)散點圖,可以判斷數(shù)學(xué)成績與物理成績具有一次函數(shù)關(guān)系;

③從全班隨機抽取2名同學(xué)(記為甲、乙),若甲同學(xué)的數(shù)學(xué)成績?yōu)?/span>80分,乙同學(xué)的數(shù)學(xué)成績?yōu)?/span>60分,則可以判斷出甲同學(xué)的物理成績一定比乙同學(xué)的物理成績高;

④從全班隨機抽取2名同學(xué)(記為甲、乙),若甲同學(xué)的數(shù)學(xué)成績?yōu)?/span>80分,乙同學(xué)的數(shù)學(xué)成績?yōu)?/span>60分,則不能判斷出甲同學(xué)的物理成績一定比乙同學(xué)的物理成績高;

其中正確的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間與極值;

(2)當(dāng)時, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)設(shè)的極值點,求,并求的單調(diào)區(qū)間;

2)當(dāng)時,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著資本市場的強勢進(jìn)入,互聯(lián)網(wǎng)共享單車忽如一夜春風(fēng)來,遍布了各級城市的大街小巷,為了解我市的市民對共享單車的滿意度,某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機抽取了50人進(jìn)行分析.若得分低于60分,說明不滿意,若得分不低于60分,說明滿意,調(diào)查滿意度得分情況結(jié)果用莖葉圖表示如圖1

(Ⅰ)根據(jù)莖葉圖找出40歲以上網(wǎng)友中滿意度得分的眾數(shù)和中位數(shù);

(Ⅱ)根據(jù)莖葉圖完成下面列聯(lián)表,并根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為滿意度與年齡有關(guān);

滿意

不滿意

合計

40歲以下

40歲以上

合計

(Ⅲ)先采用分層抽樣的方法從40歲及以下的網(wǎng)友中選取7人,再從這7人中隨機選出2人,將頻率視為概率,求選出的2人中至少有1人是不滿意的概率.

參考格式:,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案