【題目】已知某次考試之后,班主任從全班同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本,他們的數(shù)學(xué)、物理成績(jī)(單位:分)對(duì)應(yīng)如下表,對(duì)應(yīng)散點(diǎn)圖如圖所示:
學(xué)生編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)成績(jī) | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理成績(jī) | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
根據(jù)以上信息,則下列結(jié)論:
①根據(jù)散點(diǎn)圖,可以判斷數(shù)學(xué)成績(jī)與物理成績(jī)具有線(xiàn)性相關(guān)關(guān)系;
②根據(jù)散點(diǎn)圖,可以判斷數(shù)學(xué)成績(jī)與物理成績(jī)具有一次函數(shù)關(guān)系;
③從全班隨機(jī)抽取2名同學(xué)(記為甲、乙),若甲同學(xué)的數(shù)學(xué)成績(jī)?yōu)?/span>80分,乙同學(xué)的數(shù)學(xué)成績(jī)?yōu)?/span>60分,則可以判斷出甲同學(xué)的物理成績(jī)一定比乙同學(xué)的物理成績(jī)高;
④從全班隨機(jī)抽取2名同學(xué)(記為甲、乙),若甲同學(xué)的數(shù)學(xué)成績(jī)?yōu)?/span>80分,乙同學(xué)的數(shù)學(xué)成績(jī)?yōu)?/span>60分,則不能判斷出甲同學(xué)的物理成績(jī)一定比乙同學(xué)的物理成績(jī)高;
其中正確的個(gè)數(shù)是( )
A.1B.2C.3D.4
【答案】B
【解析】
觀察題中所給的散點(diǎn)圖,結(jié)合有關(guān)概念,對(duì)選項(xiàng)逐一分析,得到正確結(jié)果.
由散點(diǎn)圖知兩變量間是相關(guān)關(guān)系,非函數(shù)關(guān)系,所以①正確,②錯(cuò)誤;
利用概率知識(shí)進(jìn)行預(yù)測(cè),得到的結(jié)論有一定的隨機(jī)性,所以③錯(cuò)誤,④正確;
所以正確命題的個(gè)數(shù)為2,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,右焦點(diǎn)為,左頂點(diǎn)為A,右頂點(diǎn)B在直線(xiàn)上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)P是橢圓C上異于A,B的點(diǎn),直線(xiàn)交直線(xiàn)于點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),判斷以為直徑的圓與直線(xiàn)PF的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為,過(guò)橢圓的焦點(diǎn)且與長(zhǎng)軸垂直的弦長(zhǎng)為1.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M為橢圓上第一象限內(nèi)一動(dòng)點(diǎn),A,B分別為橢圓的左頂點(diǎn)和下頂點(diǎn),直線(xiàn)MB與x軸交于點(diǎn)C,直線(xiàn)MA與y軸交于點(diǎn)D,求證:四邊形ABCD的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸的兩個(gè)端點(diǎn)分別為、.短軸的兩個(gè)端點(diǎn)分別為,.菱形的面積為,離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),經(jīng)過(guò)點(diǎn)M作斜率不為0的直線(xiàn)交橢圓C于A、B兩點(diǎn),若,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)若存在直線(xiàn),使得對(duì)任意的,,對(duì)任意的,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí), 恒成立,求的范圍;
(2)若在處的切線(xiàn)為,求的值.并證明當(dāng))時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,多面體是由底面為的直四棱柱被截面所截而得到的,該直四棱柱的底面為菱形,其中,,,.
(1)求的長(zhǎng);
(2)求平面與底面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,并且在兩種坐標(biāo)系中取相同的長(zhǎng)度單位.若將曲線(xiàn)(為參數(shù))上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的(縱坐標(biāo)不變),然后將所得圖象向右平移2個(gè)單位,再向上平移3個(gè)單位得到曲線(xiàn)C.直線(xiàn)l的極坐標(biāo)方程為.
(1)求曲線(xiàn)C的普通方程;
(2)設(shè)直線(xiàn)l與曲線(xiàn)C交于A,B兩點(diǎn),與x軸交于點(diǎn)P,線(xiàn)段AB的中點(diǎn)為M,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線(xiàn)交于A,B兩點(diǎn),且,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com