7.為了弘揚(yáng)民族文化,某校舉行了“我愛國(guó)學(xué),傳誦經(jīng)典”考試,并從中隨機(jī)抽取了100名考生的成績(jī)(得分均為整數(shù),滿分100分)進(jìn)行統(tǒng)計(jì)制表,其中成績(jī)不低于80分的考生被評(píng)為優(yōu)秀生,請(qǐng)根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計(jì)概率,回答下列問(wèn)題.
 分組 頻數(shù) 頻率
[50,60) 5 0.05
[60,70) a 0.20
[70,80) 35 b
[80,90) 25 0.25
[90,100) 15 0.15
 合計(jì) 100 1.00
( I)求a,b的值及隨機(jī)抽取一考生恰為優(yōu)秀生的概率;
(Ⅱ)按頻率分布表中的成績(jī)分組,采用分層抽樣抽取20人參加學(xué)校的“我愛國(guó)學(xué)”宣傳活動(dòng),求其中優(yōu)秀生的人數(shù);
(Ⅲ)在第(Ⅱ)問(wèn)抽取的優(yōu)秀生中指派2名學(xué)生擔(dān)任負(fù)責(zé)人,求至少一人的成績(jī)?cè)赱90,100]的概率.

分析 (Ⅰ)由頻率分布表得$\frac{5}{0.05}=\frac{a}{0.20}=\frac{35}$,由此能求出a,b的值及隨機(jī)抽取一考生恰為優(yōu)秀生的概率.
(Ⅱ)按成績(jī)分層抽樣抽取20人時(shí),由隨機(jī)抽取一考生恰為優(yōu)秀生的概率能求出優(yōu)秀生應(yīng)抽取的人數(shù).
(Ⅲ)8人中,成績(jī)?cè)赱80,90)的有5人,成績(jī)?cè)赱90,100]的有3人,從8個(gè)人中選2個(gè)人,結(jié)果共有n=${C}_{8}^{2}$=28種選法,其中至少有一人成績(jī)?cè)赱90,100]的情況有兩種:可能有1人成績(jī)?cè)赱90,100],也可能有2人成績(jī)?cè)赱90,100],由此能示出至少一人的成績(jī)?cè)赱90,100]的概率.

解答 解:(Ⅰ)由頻率分布表得:
$\frac{5}{0.05}=\frac{a}{0.20}=\frac{35}$,
解得a=20,b=0.35,
由頻率分布表可得隨機(jī)抽取一考生恰為優(yōu)秀生的概率為:
P=0.25+0.15=0.4.
(Ⅱ)按成績(jī)分層抽樣抽取20人時(shí),
優(yōu)秀生應(yīng)抽取20×0.4=8人.
(Ⅲ)8人中,成績(jī)?cè)赱80,90)的有:20×0.25=5人,成績(jī)?cè)赱90,100]的有:20×0.15=3人,
從8個(gè)人中選2個(gè)人,結(jié)果共有n=${C}_{8}^{2}$=28種選法,
其中至少有一人成績(jī)?cè)赱90,100]的情況有兩種:
可能有1人成績(jī)?cè)赱90,100],也可能有2人成績(jī)?cè)赱90,100],
所以共有5×3+3=18種,
∴至少一人的成績(jī)?cè)赱90,100]的概率$P=\frac{18}{28}=\frac{9}{14}$.

點(diǎn)評(píng) 本題考查頻率分布表的應(yīng)用,考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù)f(x)=(x+b)lnx,已知曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+2y=0垂直.
(Ⅰ) 求b的值.
(Ⅱ) 若函數(shù)$g(x)={e^x}(\frac{f(x)}{x+1}-a)(a≠0)$,且g(x)在區(qū)間(0,+∞)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)g(x)=$\frac{2}{x}-alnx({a∈R}),f(x)={x^2}$+g(x).
(1)試判斷g(x)的單調(diào)性;
(2)若f(x)在區(qū)間(0,1)上有極值,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a>0時(shí),若f(x)有唯一的零點(diǎn)x0,試求[x0]的值.(注:[x]為取整函數(shù),表示不超過(guò)x的最大整數(shù),如[0.3]=0,[2.6]=2,[-1.4]=-2;以下數(shù)據(jù)供參考:ln2=0.6931,ln3=1.099,ln5=1.609,ln7=1.946)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(2-[x])•|x-1|,(0≤x<2)}\\{1,(x=2)}\end{array}\right.$,其中[x]表示不超過(guò)x的最大整數(shù).設(shè)n∈N*,定義函數(shù)fn(x):f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x))(n≥2),則下列說(shuō)法正確的有
①y=$\sqrt{x-f(x)}$的定義域?yàn)?[{\frac{2}{3},2}]$;
②設(shè)A={0,1,2},B={x|f3(x)=x,x∈A},則A=B;
③${f_{2016}}(\frac{8}{9})+{f_{2017}}(\frac{8}{9})=\frac{13}{9}$;
④若集合M={x|f12(x)=x,x∈[0,2]},
則M中至少含有8個(gè)元素.( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,也是古代東方數(shù)學(xué)的代表作.書中有如下問(wèn)題:“今有勾八步,股一十五步,問(wèn)勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長(zhǎng)分別為8步和15步,問(wèn)其內(nèi)切圓的直徑為多少步?”現(xiàn)若向此三角形內(nèi)投豆子,則落在其內(nèi)切圓內(nèi)的概率是( 。
A.$\frac{3π}{10}$B.$\frac{π}{20}$C.$\frac{3π}{20}$D.$\frac{π}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知y=f(x+1)+2是定義域?yàn)镽的奇函數(shù),則f(e)+f(2-e)=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知角α(0°≤α<360°)終邊上一點(diǎn)的坐標(biāo)為(sin215°,cos215°),則α=(  )
A.215°B.225°C.235°D.245°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=ex+ax+b(a,b∈R)在x=ln2處的切線方程為y=x-2ln2.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x>0,k≤2時(shí),求證:(k-x)f'(x)<x+1(其中f'(x)為f(x)的導(dǎo)函數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合$M=\{x|{x^2}=x\},N=\{x|\frac{x}{x-1}≥0\}$,則M∩N=(  )
A.B.{0}C.{1}D.{0,1}

查看答案和解析>>

同步練習(xí)冊(cè)答案