A. | 1 | B. | 2 | C. | -1 | D. | -2 |
分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,結(jié)合z=x+y的最大值是2,可知a<0,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)即可求出a的值.
解答 解:由約束條件$\left\{\begin{array}{l}{y≤2}\\{y≥x}\\{y≤a(x-1)}\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{y=2}\\{y=a(x-1)}\end{array}\right.$,解得A($\frac{a+2}{a},2$),
化目標(biāo)函數(shù)z=x+y為y=-x+z,由圖可知,當(dāng)直線y=-x+z過A時,直線在y軸上的截距最大,z有最大值為$\frac{a+2}{a}+2=2$,得a=-2.
故選:D.
點(diǎn)評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | -3 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com