19.下列四個(gè)函數(shù)中,與y=x表示同一函數(shù)的是(  )
A.y=$\sqrt{x}$B.$y=\frac{x^2}{x}$C.$y=\sqrt{x^2}$D.$y=\root{3}{x^3}$

分析 根據(jù)定義域和解析式都相同判斷函數(shù)是否是同一函數(shù)即可.

解答 解:對(duì)于A,x≥0,解析式和定義域都不同,
對(duì)于B,定義域不同,
對(duì)于C,y=|x|,解析式不同,
對(duì)于D,y=x,解析式和定義域都相同,
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的定義域問題,考查同一函數(shù)的定義,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{56}{3}$B.$\frac{112}{3}$C.$\frac{119}{3}$D.$\frac{128}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.直線x-y-1=0被圓x2-4x-4+y2=0截得的弦長(zhǎng)是$\sqrt{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知不等式|x-3|+|x+2|≤|a+1|.
(1)當(dāng)a=-8時(shí),解不等式;
(2)若不等式有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)$y=lg|{x+1}|-\frac{1}{x}$的零點(diǎn)個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求下列函數(shù)的定義域:
(1)y=$\sqrt{lg(cosx)}$;
(2)y=lgsin2x+$\sqrt{9-{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x,y∈[0,2π],若$2sinxcosy-sinx+cosy=\frac{1}{2}$,則x-y的最小值為-$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.?dāng)?shù)列$1,\frac{1}{{\sqrt{2}}},\frac{1}{{\sqrt{3}}},\frac{1}{2},\frac{1}{{\sqrt{5}}},…$的通項(xiàng)公式an=( 。
A.an=$\frac{1}{{\sqrt{n+1}}}$B.an=$\frac{1}{{\sqrt{n-1}}}$C.${a_n}=\frac{1}{{\sqrt{n}}}$D.${a_n}=\frac{1}{{\sqrt{2n-1}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=sinx(cosx-$\sqrt{3}$sinx).
(1)求函數(shù)f(x)在[0,π]上的單調(diào)遞增區(qū)間;
(2)設(shè)△ABC的三個(gè)角A、B、C所對(duì)的邊分別為a、b、c,且f(B)=0,a、b、$\sqrt{3}$c成公差大于零的等差數(shù)列,求$\frac{sinA}{sinC}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案