分析 根據(jù)二項式展開式的通項寫出展開式中x2項的系數(shù),列方程求出a的值,再求定積分的值.
解答 解:設${({a{x^2}-\frac{1}{{\sqrt{x}}}})^6}$展開式的通項為:
${T_{k+1}}=C_6^k{({a{x^2}})^{6-k}}{({-{x^{-\frac{1}{2}}}})^k}=C_6^k{a^{6-k}}{({-1})^k}{x^{12-\frac{5}{2}k}}$,
令$12-\frac{5}{2}k=2$,求得k=4;
于是展開式中x2項的系數(shù)為$C_6^k{a^2}=15{a^2}$,
則15a2=60,
注意到a>0,求得a=2;
所以${∫}_{-1}^{a}$(x2-2x)dx=${∫}_{-1}^{2}$(x2-2x)dx
=($\frac{1}{3}$x3-x2)${|}_{-1}^{2}$
=($\frac{1}{3}$×23-22)-[$\frac{1}{3}$×(-1)3-(-1)2]
=-$\frac{4}{3}$+$\frac{4}{3}$
=0.
故答案為:0.
點評 本題考查了二項式展開式的應用問題,也考查了定積分的計算問題,是基礎題目.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com