9.已知函數(shù)f(x)=2x+sinx,且f(y2-2y+3)+f(x2-4x+1)≤0,則當(dāng)y≥1時(shí),$\frac{y}{x+1}$的取值范圍是( 。
A.$[{\frac{1}{4},\frac{3}{4}}]$B.$[{0,\frac{3}{4}}]$C.$[{\frac{1}{4},\frac{1}{2}}]$D.$[{\frac{1}{4},\frac{1}{3}}]$

分析 判斷函數(shù)f(x)的奇偶性和單調(diào)性,將不等式進(jìn)行轉(zhuǎn)化,利用直線和圓的位置關(guān)系,結(jié)合數(shù)形結(jié)合和$\frac{y}{x+1}$的幾何意義即可得到結(jié)論.

解答 解:∵f(x)=2x+sinx(x∈R),
∴f(-x)=-2x-sinx=-(2x+sinx)=-f(x),
即f(x)=2x+sinx(x∈R)是奇函數(shù),
∵f(y2-2y+3)+f(x2-4x+1)≤0,
∴f(y2-2y+3)≤-f(x2-4x+1)=f[-(x2-4x+1)],
由f'(x)=1-cosx≥0,
∴函數(shù)單調(diào)遞增.
∴(y2-2y+3)≤-(x2-4x+1),
即(y2-2y+3)+(x2-4x+1)≤0,
∴(y-1)2+(x-2)2≤1,
∵y≥1,
∴不等式對(duì)應(yīng)的平面區(qū)域?yàn)閳A心為(2,1),半徑為1的圓的上半部分.
$\frac{y}{x+1}$的幾何意義為動(dòng)點(diǎn)P(x,y)到定點(diǎn)A(-1,0)的斜率的取值范圍.
設(shè)k=$\frac{y}{x+1}$,(k>0)
則y=kx+k,即kx-y+k=0.
當(dāng)直線和圓相切是,圓心到直線的距離d=$\frac{|3k-1|}{\sqrt{1+{k}^{2}}}$=1,
即8k2-6k=0,解得k=$\frac{3}{4}$.此時(shí)直線斜率最大.
當(dāng)直線kx-y+k=0.經(jīng)過點(diǎn)B(3,1)時(shí),直線斜率最小,
此時(shí)3k-1+k=0,即4k=1,解得k=$\frac{1}{4}$
∴$\frac{1}{4}$≤k≤$\frac{3}{4}$,
故選:A.

點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系的應(yīng)用,函數(shù)奇偶性和單調(diào)性的判斷以及直線斜率的取值范圍,綜合性較強(qiáng),運(yùn)算量較大,利用數(shù)形結(jié)合是解決本題的基本思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若復(fù)數(shù)z1=4+19i,z2=6+9i,其中i是虛數(shù)單位,則復(fù)數(shù)z1+z2的實(shí)部為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在三棱錐P-ABC中,PA⊥平面ABC,AB=BC=AC=2,PA=$\sqrt{2}$,E,F(xiàn)分別是PB,BC的中點(diǎn),則EF與平面PAB所成的角等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知直線l:kx-y-3k=0與圓M:x2+y2-8x-2y+9=0.
(1)直線過定點(diǎn)A,求A點(diǎn)坐標(biāo);
(2)求證:直線l與圓M必相交;
(3)當(dāng)圓M截直線l所得弦長(zhǎng)最小時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)求函數(shù)f(x)=$\frac{1}{ln(x+1)}$+$\sqrt{4-{x}^{2}}$的定義域;
(2)已知函數(shù)f(x+3)的定義域?yàn)閇-5,-2],求函數(shù)f(x+1)+f(x-1)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列四個(gè)圖形中不可能是函數(shù)y=f(x)圖象的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.大西洋鮭魚每年都要逆流而上游回產(chǎn)地產(chǎn)卵,科學(xué)家發(fā)現(xiàn)鮭魚的游速可以表示為函數(shù)v=$\frac{1}{2}$log3(${\frac{x}{100}$π),單位是m/s,其中x表示魚的耗氧量的單位數(shù).則一條鮭魚靜止時(shí)耗氧量的單位數(shù)是$\begin{array}{l}\frac{100}{π}\end{array}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x3-9x,函數(shù)g(x)=3x2+a.
(Ⅰ)已知直線l是曲線y=f(x)在點(diǎn)(0,f(0))處的切線,且l與曲線y=g(x)相切,求a的值;
(Ⅱ)若方程f(x)=g(x)有三個(gè)不同實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.《九章算術(shù)》是我國(guó)古代一部重要的數(shù)學(xué)著作,書中有如下問題:“今有良馬與駑馬發(fā)長(zhǎng)安,至齊.齊去長(zhǎng)安三千里,良馬初日行一百九十三里,日增一十三里,駑馬初日行九十七里,日減半里.良馬先至齊,復(fù)還迎駑馬,問幾何日相逢.”其大意為:“現(xiàn)在有良馬和駑馬同時(shí)從長(zhǎng)安出發(fā)到齊去,已知長(zhǎng)安和齊的距離是3000里,良馬第一天行193里,之后每天比前一天多行13里,駑馬第一天行97里,之后每天比前一天少行0.5里.良馬到齊后,立刻返回去迎駑馬,多少天后兩馬相遇.”試確定離開長(zhǎng)安后的第24天,兩馬相逢.

查看答案和解析>>

同步練習(xí)冊(cè)答案