【題目】我國(guó)古達(dá)數(shù)學(xué)名著《九章算術(shù)-商功》中闡述:“斜解立方,得兩塹堵,斜解塹堵,其一為陽(yáng)馬,一為鱉觸,陽(yáng)馬居二,鱉屬居一.不易之率也。合兩鱉觸三而一,驗(yàn)之以基,其形露矣,”若稱(chēng)為“陽(yáng)馬”的某幾何體的三視圖如圖所示 圖中網(wǎng)格紙上小正方形的邊長(zhǎng)為. 則對(duì)該兒何體描述:
①四個(gè)側(cè)面首飾直角三角形
②最長(zhǎng)的側(cè)棱長(zhǎng)為
③四個(gè)側(cè)面中有三個(gè)側(cè)面是全等的直角三角形
④外接球的表面積為
其中正確的個(gè)數(shù)為( )
A. B. C. D.
【答案】A
【解析】
由三視圖還原幾何體,根據(jù)長(zhǎng)度關(guān)系依次驗(yàn)證各個(gè)選項(xiàng),可得正確結(jié)果.
由三視圖還原幾何體,如下圖所示:
由三視圖可知:,,且面
,,
①面,可知,,為直角三角形;
又,,可知面,得,為直角三角形;
又,,可知面,得,為直角三角形;
可知四個(gè)側(cè)面均為直角三角形,①正確;
②由圖可知,最長(zhǎng)側(cè)棱為,且,②正確;
③三邊長(zhǎng)為:;三邊長(zhǎng)為:;
三邊長(zhǎng)為:;三邊長(zhǎng)為:
可知四個(gè)側(cè)面均不相同,③錯(cuò)誤;
④外接球球心為中點(diǎn),則,則外接球表面積為:,④正確.
本題正確選項(xiàng):
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)),.
(1)當(dāng)時(shí),求函數(shù)的極小值;
(2)若當(dāng)時(shí),關(guān)于的方程有且只有一個(gè)實(shí)數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的方程為,是橢圓上的一點(diǎn),且在第一象限內(nèi),過(guò)且斜率等于-1的直線(xiàn)與橢圓交于另一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為.
(1)證明:直線(xiàn)的斜率為定值;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“科技引領(lǐng),布局未來(lái)”科技研發(fā)是企業(yè)發(fā)展的驅(qū)動(dòng)力量。年,某企業(yè)連續(xù)年累計(jì)研發(fā)投入搭億元,我們將研發(fā)投入與經(jīng)營(yíng)投入的比值記為研發(fā)投入占營(yíng)收比,這年間的研發(fā)投入(單位:十億元)用右圖中的折現(xiàn)圖表示,根據(jù)折線(xiàn)圖和條形圖,下列結(jié)論錯(cuò)誤的使( )
A. 年至年研發(fā)投入占營(yíng)收比增量相比年至年增量大
B. 年至年研發(fā)投入增量相比年至年增量小
C. 該企業(yè)連續(xù)年研發(fā)投入逐年增加
D. 該企業(yè)來(lái)連續(xù)年來(lái)研發(fā)投入占營(yíng)收比逐年增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)有甲,乙兩個(gè)車(chē)間生產(chǎn)同一種產(chǎn)品,,甲車(chē)間有工人人,乙車(chē)間有工人人,為比較兩個(gè)車(chē)間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,甲車(chē)間抽取的工人記作第一組,乙車(chē)間抽取的工人記作第二組,并對(duì)他們中每位工人生產(chǎn)完成的一件產(chǎn)品的事件(單位:)進(jìn)行統(tǒng)計(jì),按照進(jìn)行分組,得到下列統(tǒng)計(jì)圖.
分別估算兩個(gè)車(chē)間工人中,生產(chǎn)一件產(chǎn)品時(shí)間少于的人數(shù)
分別估計(jì)兩個(gè)車(chē)間工人生產(chǎn)一件產(chǎn)品時(shí)間的平均值,并推測(cè)車(chē)哪個(gè)車(chē)間工人的生產(chǎn)效率更高?
從第一組生產(chǎn)時(shí)間少于的工人中隨機(jī)抽取人,記抽取的生產(chǎn)時(shí)間少于的工人人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,矩形,、、,將矩形折疊,使O點(diǎn)落在線(xiàn)段上,設(shè)折痕所在直線(xiàn)的斜率為k,則k的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是( )
A. 在回歸模型中,預(yù)報(bào)變量的值不能由解釋變量唯一確定
B. 若變量,滿(mǎn)足關(guān)系,且變量與正相關(guān),則與也正相關(guān)
C. 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D. 以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線(xiàn)性方程,則,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于旋轉(zhuǎn)體的體積,有如下的古爾。guldin)定理:“平面上一區(qū)域D繞區(qū)域外一直線(xiàn)(區(qū)域D的每個(gè)點(diǎn)在直線(xiàn)的同側(cè),含直線(xiàn)上)旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積,等于D的面積與D的幾何中心(也稱(chēng)為重心)所經(jīng)過(guò)的路程的乘積”.利用這一定理,可求得半圓盤(pán),繞直線(xiàn)x旋轉(zhuǎn)一周所形成的空間圖形的體積為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com