【題目】小五、小一、小節(jié)、小快、小樂五位同學(xué)站成一排,若小一不出現(xiàn)在首位和末位,小五、小節(jié)、小樂中有且僅有兩人相鄰,求能滿足條件的不同排法共有多少種?

【答案】48個

【解析】試題 分析】先依據(jù)題設(shè)條件,運用分類整合的思想按小一的位置分三類,然后再運用分步計數(shù)與分類計數(shù)原理進行計算求解:

解:按小一的位置分三類:

①當(dāng)小一出現(xiàn)在第2位時,則第1位必為小五、小節(jié)、小樂中的一位同學(xué),

所以滿足條件的五位數(shù)有個;

②當(dāng)小一出現(xiàn)在第3位時,則第1位、第2位為小五、小節(jié)、小樂中的兩位同學(xué)或第4位、第5位為小五、小節(jié)、小樂中的兩位同學(xué),

所以滿足條件的五位數(shù)有個;

③當(dāng)小一出現(xiàn)在第4位時,則第5位必為小五、小節(jié)、小樂中的一位同學(xué),

所以滿足條件的五位數(shù)有個.

綜上,共有個.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有五張卡片,其中紅色卡片三張,標(biāo)號分別為1,2,3;藍(lán)色卡片兩張,標(biāo)號分別為1,2.

(1)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號之和小于4的概率;

(2)現(xiàn)袋中再放入一張標(biāo)號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號之和小于4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若,求證:函數(shù)有且只有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點,且的離心率為.

(1)求的方程;

(2)過的頂點作兩條互相垂直的直線與橢圓分別相交于兩點.若的角平分線方程為,求的面積及直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】產(chǎn)品的廣告費支出x與銷售額y(單位百萬元)之間有如下對應(yīng)數(shù)據(jù)

x

2

4

5

6

8

y

30

40

60

50

70

(1)畫出散點圖.

(2)求回歸方程.

(3)試預(yù)測廣告費支出為10百萬元時,銷售額多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為,且乙投球3次均未命中的概率為,甲投球未命中的概率恰是乙投球未命中的概率的2倍. 

(Ⅰ)求乙投球的命中率;

(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)x∈[-2,1]時,不等式ax3x2+4x+3≥0恒成立,則實數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國好聲音()》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強力打造的大型勵志專業(yè)音樂評論節(jié)目,于2012713日在浙江衛(wèi)視播出.每期節(jié)目有四位導(dǎo)師參加.導(dǎo)師背對歌手,當(dāng)每位參賽選手演唱完之前有導(dǎo)師為其轉(zhuǎn)身,則該選手可以選擇加入為其轉(zhuǎn)身的導(dǎo)師的團隊中接受指導(dǎo)訓(xùn)練.已知某期《中國好聲音》中,6位選手唱完后,四位導(dǎo)師為其轉(zhuǎn)身的情況如下表所示:

導(dǎo)師轉(zhuǎn)身人數(shù)(人)

4

3

2

1

獲得相應(yīng)導(dǎo)師轉(zhuǎn)身的選手人數(shù)(人)

1

2

2

1

現(xiàn)從這6位選手中隨機抽取兩人考查他們演唱完后導(dǎo)師的轉(zhuǎn)身情況.

1)請列出所有的基本事件;

2)求兩人中恰好其中一位為其轉(zhuǎn)身的導(dǎo)師不少于3人,而另一人為其轉(zhuǎn)身的導(dǎo)師不多于2人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以O為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ,直線的參數(shù)方程為: t為參數(shù)),兩曲線相交于MN兩點.

)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;

)若P﹣2,﹣4),求|PM|+|PN|的值.

查看答案和解析>>

同步練習(xí)冊答案