12.若復(fù)數(shù)z滿足(1+i)z=2+i,則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義即可得出.

解答 解:(1+i)z=2+i,(1-i)(1+i)z=(2+i)(1-i),∴2z=3-i,解得z=$\frac{3}{2}$-$\frac{1}{2}$i.
則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$=$\frac{3}{2}$+$\frac{1}{2}$i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)($\frac{3}{2}$,$\frac{1}{2}$)位于第一象限.
故答案為:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.用秦九韶算法計(jì)算多項(xiàng)式f(x)=3x6+5x5+6x4+79x3-8x2+35x+12在x=-4時(shí)的值時(shí),運(yùn)算總次數(shù)為( 。
A.11B.12C.26D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.有人在路邊設(shè)局,宣傳牌上寫(xiě)有“擲骰子,贏大獎(jiǎng)”.其游戲規(guī)則是這樣的:你可以在1,2,3,4,5,6點(diǎn)中任選一個(gè),并押上賭注m元,然后擲1顆骰子,連續(xù)擲3次,若你所押的點(diǎn)數(shù)在3次擲骰子過(guò)程中出現(xiàn)1次,2次,3次,那么原來(lái)的賭注仍還給你,并且莊家分別給予你所押賭注的1倍,2倍,3倍的獎(jiǎng)勵(lì).如果3次擲骰子過(guò)程中,你所押的點(diǎn)數(shù)沒(méi)出現(xiàn),那么你的賭注就被莊家沒(méi)收.
(1)求擲3次骰子,至少出現(xiàn)1次為5點(diǎn)的概率;
(2)如果你打算嘗試一次,請(qǐng)計(jì)算一下你獲利的期望值,并給大家一個(gè)正確的建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,在平行四邊形ABCD中,∠BAD=$\frac{π}{3}$,AB=2,AD=1,若M、N分別是邊AD、CD上的點(diǎn),且滿足$\frac{MD}{AD}$=$\frac{NC}{DC}$=λ,其中λ∈[0,1],則$\overrightarrow{AN}$•$\overrightarrow{BM}$的取值范圍是( 。
A.[-3,1]B.[-3,-1]C.[-1,1]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.當(dāng)a$<\frac{1}{2}$時(shí),關(guān)于x的不等式(ex-a)x-ex+2a<0的解集中有且只有兩個(gè)整數(shù)值,則實(shí)數(shù)a的取值范圍是[$\frac{3}{{4e}^{2}}$,$\frac{2}{3e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且經(jīng)過(guò)點(diǎn)$(0,\;-2\sqrt{2})$,過(guò)橢圓的左頂點(diǎn)A作直線l⊥x軸,點(diǎn)M為直線l上的動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)A不重合),點(diǎn)B為橢圓右頂點(diǎn),直線BM交橢圓C于點(diǎn)P.
(1)求橢圓C的方程.
(2)求證:AP⊥OM.
(3)試問(wèn):$\overrightarrow{OP}•\overrightarrow{OM}$是否為定值?若是定值,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某水泥廠銷售工作人員根據(jù)以往該廠的銷售情況,繪制了該廠日銷售量的頻率分布直方圖,如圖所示:將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.
(1)求未來(lái)3天內(nèi),連續(xù)2天日銷售量不低于8噸,另一天日銷售量低于8噸的概率;
(2)用X表示未來(lái)3天內(nèi)日銷售量不低于8噸的天數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.一個(gè)三角形可分為以內(nèi)切圓半徑為高,以原三角形三條邊為底的三個(gè)三角形,類比此方法,若一個(gè)三棱錐的體積V=2,表面積S=3,則該三棱錐內(nèi)切球的體積為(  )
A.81πB.16πC.$\frac{32π}{3}$D.$\frac{16π}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{a+1}{2}{x^2}+ax-1$,$g(x)=\frac{1}{2}(a-4){x^2}$,其中a≥1.
(Ⅰ)f(x)在(0,2)上的值域?yàn)椋╯,t),求a的取值范圍;
(Ⅱ)若a≥3,對(duì)于區(qū)間[2,3]上的任意兩個(gè)不相等的實(shí)數(shù)x1、x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案