已知等比數(shù)列首項(xiàng)為,公比為q,求(1)該數(shù)列的前n項(xiàng)和
(2)若q≠1,證明數(shù)列 不是等比數(shù)列

(1)  (2)見(jiàn)解析.

解析試題分析:(1)分q=1與q≠1兩種情況討論,當(dāng)q≠1,0時(shí),利用錯(cuò)位相減法即可得出;
(2)假設(shè)數(shù)列是等比數(shù)列,則,即
這與已知矛盾,使用反證法即可證明.
(1)數(shù)列為等比數(shù)列,



當(dāng)時(shí),
當(dāng)時(shí),     
(2)假設(shè)數(shù)列是等比數(shù)列,則
,
,   即
這與已知矛盾,不是等比數(shù)列.
考點(diǎn):等比數(shù)列的通項(xiàng)公式;前n項(xiàng)和公式;錯(cuò)位相減法;反證法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知等比數(shù)列的各項(xiàng)均為正數(shù),若,前三項(xiàng)的和為21 ,則      。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)正數(shù)數(shù)列為等比數(shù)列,,記.
(1)求
(2)證明: 對(duì)任意的,有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別為等比數(shù)列{bn}的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}對(duì)n∈N*,均有+…+=an+1成立,求c1+c2+c3+…+c2014的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(13分)(2011•重慶)設(shè){an}是公比為正數(shù)的等比數(shù)列a1=2,a3=a2+4.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙兩容器中分別盛有兩種濃度的某種溶液,從甲容器中取出溶液,將其倒入乙容器中攪勻,再?gòu)囊胰萜髦腥〕?img src="http://thumb.zyjl.cn/pic5/tikupic/cd/a/1py3v2.png" style="vertical-align:middle;" />溶液,將其倒入甲容器中攪勻,這稱為是一次調(diào)和,已知第一次調(diào)和后,甲、乙兩種溶液的濃度分別記為:,第次調(diào)和后的甲、乙兩種溶液的濃度分別記為:、.
(1)請(qǐng)用分別表示;
(2)問(wèn)經(jīng)過(guò)多少次調(diào)和后,甲乙兩容器中溶液的濃度之差小于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若數(shù)列滿足條件:存在正整數(shù),使得對(duì)一切都成立,則稱數(shù)列級(jí)等差數(shù)列.
(1)已知數(shù)列為2級(jí)等差數(shù)列,且前四項(xiàng)分別為,求的值;
(2)若為常數(shù)),且級(jí)等差數(shù)列,求所有可能值的集合,并求取最小正值時(shí)數(shù)列的前3項(xiàng)和;
(3)若既是級(jí)等差數(shù)列,也是級(jí)等差數(shù)列,證明:是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Sn-n2,n∈N.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,且對(duì)任意的,都有.
(1)若{bn }的首項(xiàng)為4,公比為2,求數(shù)列{an+bn}的前n項(xiàng)和Sn;
(2)若 ,試探究:數(shù)列{bn}中是否存在某一項(xiàng),它可以表示為該數(shù)列中其它項(xiàng)的和?若存在,請(qǐng)求出該項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案