【題目】端午節(jié)(每年農(nóng)歷五月初五),是中國(guó)傳統(tǒng)節(jié)日,有吃粽子的習(xí)俗.某超市在端午節(jié)這一天,每售出kg粽子獲利潤(rùn)元,未售出的粽子每kg虧損元.根據(jù)歷史資料,得到銷售情況與市場(chǎng)需求量的頻率分布表,如下表所示.該超市為今年的端午節(jié)預(yù)購(gòu)進(jìn)了kg粽子.以(單位:kg,)表示今年的市場(chǎng)需求量,(單位:元)表示今年的利潤(rùn).
市場(chǎng)需求量(kg) | |||||
頻率 | 0.1 | 0.2 | 0.3 | 0.25 | 0.15 |
(1)將表示為的函數(shù);
(2)根據(jù)頻率分布表估計(jì)今年利潤(rùn)不少于元的概率.
【答案】(1);(2)
【解析】
(1)根據(jù)利潤(rùn)等于售出的粽子的利潤(rùn)減去未售出的粽子虧損的錢數(shù)之差列式并整理,即可得到答案;
(2)根據(jù)(1)中利潤(rùn)函數(shù)解出利潤(rùn)不少于元時(shí)的范圍,結(jié)合頻率分布表可確定在此范圍內(nèi)的頻率,進(jìn)而可估計(jì)出概率.
(1)當(dāng)時(shí),;
當(dāng)時(shí),.
所以
(2)由(1)知,①當(dāng)時(shí),由得,
解得,又,所以;
②當(dāng)時(shí),恒成立,
綜上,當(dāng)時(shí),利潤(rùn)不少于元,
由頻率分布表可知的頻率為,
所以今年利潤(rùn)不少于元的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2014年,中央和國(guó)務(wù)院辦公廳印發(fā)《關(guān)于引導(dǎo)農(nóng)村土地經(jīng)營(yíng)權(quán)有序流轉(zhuǎn)發(fā)展農(nóng)業(yè)適度規(guī)模經(jīng)營(yíng)的意見(jiàn)》,要求大力發(fā)展土地流轉(zhuǎn)和適度規(guī)模經(jīng)營(yíng).某種糧大戶2015年開(kāi)始承包了一地區(qū)的大規(guī)模水田種植水稻,購(gòu)買了一種水稻收割機(jī)若干臺(tái),這種水稻收割機(jī)隨著使用年限的增加,每年的養(yǎng)護(hù)費(fèi)也相應(yīng)增加,這批水稻收割機(jī)自購(gòu)買使用之日起,5年以來(lái)平均每臺(tái)水稻收割機(jī)的養(yǎng)護(hù)費(fèi)用數(shù)據(jù)統(tǒng)計(jì)如下:
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
養(yǎng)護(hù)費(fèi)用 (萬(wàn)元) | 1.1 | 1.6 | 2 | 2.5 | 2.8 |
(1)從這5年中隨機(jī)抽取2年,求平均每臺(tái)水稻收割機(jī)每年的養(yǎng)護(hù)費(fèi)用至少有1年多于2萬(wàn)元的概率;
(2)求關(guān)于的線性回歸方程;
(3)若該水稻收割機(jī)的購(gòu)買價(jià)格是每臺(tái)16萬(wàn)元,由(2)中的回歸方程,從每臺(tái)水稻收割機(jī)的年平均費(fèi)用角度,你認(rèn)為一臺(tái)該水稻收割機(jī)是使用滿5年就淘汰,還是繼續(xù)使用到滿8年再淘汰?
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,,平面平面,為的中點(diǎn),,,.
(1)求證:平面平面;
(2)若異面直線與所成角為,求的長(zhǎng);
(3)在(2)的條件下,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線在處的切線方程;
(2)若不等式對(duì)任意恒成立,求正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ln (x+1)- -x,a∈R.
(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在發(fā)生公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間內(nèi)沒(méi)有發(fā)生大規(guī)模群體感染的標(biāo)志為“連續(xù)10天,每天新增疑似病例不超過(guò)7人”.過(guò)去10日,A、B、C、D四地新增疑似病例數(shù)據(jù)信息如下:
A地:中位數(shù)為2,極差為5; B地:總體平均數(shù)為2,眾數(shù)為2;
C地:總體平均數(shù)為1,總體方差大于0; D地:總體平均數(shù)為2,總體方差為3.
則以上四地中,一定符合沒(méi)有發(fā)生大規(guī)模群體感染標(biāo)志的是_______(填A、B、C、D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)為圓:上一動(dòng)點(diǎn),過(guò)點(diǎn)分別作軸,軸的垂線,垂足分別為,,連接延長(zhǎng)至點(diǎn),使得,點(diǎn)的軌跡記為曲線.
(1)求曲線的方程;
(2)若點(diǎn),分別位于軸與軸的正半軸上,直線與曲線相交于,兩點(diǎn),且,試問(wèn)在曲線上是否存在點(diǎn),使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為直角梯形,∥,,,,為的中點(diǎn).
(Ⅰ)證明:∥平面;
(Ⅱ)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二手車經(jīng)銷商小王對(duì)其所經(jīng)營(yíng)的A型號(hào)二手汽車的使用年數(shù)x與銷售價(jià)格y(單位:萬(wàn)元/輛)進(jìn)行整理,得到如下數(shù)據(jù):
如圖是z關(guān)于x的折線圖:
(1)由折線圖可以看出,可以用線性回歸模型擬合z和x的關(guān)系,請(qǐng)用相關(guān)系數(shù)r加以說(shuō)明(注:若相關(guān)系數(shù)︱r︱0.75,則認(rèn)為兩個(gè)變量相關(guān)程度較強(qiáng));
(2)求y關(guān)于x的回歸方程并預(yù)測(cè)某輛A型號(hào)二手車當(dāng)使用年數(shù)為9年時(shí)售價(jià)約為多少?(小數(shù)點(diǎn)后面保留兩位有效數(shù)字);
(3)基于成本的考慮,該型號(hào)二手車的售價(jià)不得低于7118元,請(qǐng)根據(jù)(2)求出的回歸方程預(yù)測(cè)在收購(gòu)該型號(hào)的二手車時(shí)車輛的使用年限不得超過(guò)多少年?
參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:
,
參考數(shù)據(jù):
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com