11.已知P為矩形ABCD所在平面內(nèi)一點(diǎn),AB=4,AD=3,$PA=\sqrt{5}$,$PC=2\sqrt{5}$,則$\overrightarrow{PB}•\overrightarrow{PD}$=( 。
A.-5B.-5或0C.0D.5

分析 根據(jù)矩形的性質(zhì)和勾股定理可判斷$\overrightarrow{PB}$⊥$\overrightarrow{PD}$,繼而可得$\overrightarrow{PB}$⊥$\overrightarrow{PD}$,問(wèn)題得以解決.

解答 解:P為矩形ABCD所在平面內(nèi)一點(diǎn),AB=4,AD=3,
∴AC=5,
∵$PA=\sqrt{5}$,$PC=2\sqrt{5}$,
∴PA2+PC2=AC2,
∴PA⊥$\overrightarrow{PC}$,
∴$\overrightarrow{PB}$⊥$\overrightarrow{PD}$,
∴$\overrightarrow{PB}•\overrightarrow{PD}$=0,
故選:C.

點(diǎn)評(píng) 本題考查了向量的垂直和勾股定理,以及矩形的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合M={-1,0,1},N={y|y=1-cos$\frac{π}{2}$x,x∈M},則集合M∩N的真子集的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$,$\overrightarrow a=(2,0)$,$|\overrightarrow b|=1$,則$|\overrightarrow a+2\overrightarrow b|$=( 。
A.1B.2C.$2\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.定義min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,已知實(shí)數(shù)x,y滿足|x|≤2,|y|≤2,設(shè)z=min{x+y,2x-y},則z的取值范圍為[-6,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知θ是第四象限,且$sin(θ+\frac{π}{4})=\frac{5}{13}$,則$tan(θ-\frac{π}{4})$=-$\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在區(qū)間[0,1]上任選兩個(gè)數(shù)x和y,則$y≥\sqrt{1-{x^2}}$的概率為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$1-\frac{π}{6}$D.$1-\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,菱形ABCD與正三角形BCE的邊長(zhǎng)均為2,且平面ABCD⊥平面BCE,F(xiàn)D⊥平面ABCD,$FD=\sqrt{3}$.
(I)求證:EF∥平面ABCD;
(II)求證:平面ACF⊥平面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.(x-$\frac{1}{\sqrt{x}}$)n的展開(kāi)式中,所有二項(xiàng)式系數(shù)之和為512,則展開(kāi)式中x3的系數(shù)為126(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知角α的終邊經(jīng)過(guò)點(diǎn)(3a-9,a+2),且sin2α≤0,sinα>0,則a的取值范圍是( 。
A.(-2,3)B.[-2,3)C.(-2,3]D.[-2,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案