已知不等式
的整數(shù)解構(gòu)成等差數(shù)列
,且
,則數(shù)列
的第四項(xiàng)為( )
本題考查一元二次不等式的解法,等差數(shù)列的通項(xiàng)公式及運(yùn)算.
由等式
解得
則整數(shù)解為
于是根據(jù)條件知:
則
故選A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分) 設(shè)等差數(shù)列{
an}的首項(xiàng)
a1為
a,公差
d=2,
前
n項(xiàng)和為
Sn.
(Ⅰ) 若
S1,
S2,
S4成等比數(shù)列,求數(shù)列{
an}的通項(xiàng)公式;
(Ⅱ) 證明:
n∈N*,
Sn,
Sn+1,
Sn+2不構(gòu)成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
(m為常數(shù),m>0且
)
設(shè)
是首項(xiàng)為4,公差為2的等差數(shù)列.
(1)求證:數(shù)列
是等比數(shù)列;
(2)若
,且數(shù)列{b
n}的前n項(xiàng)和
,當(dāng)
時(shí),求
(3)若
,問是否存在
,使得
中每一項(xiàng)恒小于它后面的項(xiàng)?
若存在,求出
的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)已知曲線
從C上一點(diǎn)Q
n(x
n,y
n)作x軸的垂線,交C
n于點(diǎn)P
n,再從點(diǎn)P
n作y軸的垂線,交C于點(diǎn)Q
n+1(x
n+1,y
n+1)。設(shè)x
1=1,a
n=x
n+1-x
n,b
n=y(tǒng)
n-y
n+1 ①求Q
1,Q
2的坐標(biāo) ;②求數(shù)列{a
n}的通項(xiàng)公式;
③記數(shù)列{a
n·b
n}的前n項(xiàng)和為S
n,求證:
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,數(shù)列
滿足
,且
.
(1)試探究數(shù)列
是否是等比數(shù)列?
(2)試證明
;
(3)設(shè)
,試探究數(shù)列
是否存在最大項(xiàng)和最小項(xiàng)?若存在求出
最大項(xiàng)和最小項(xiàng),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知等差數(shù)列{
}的前n項(xiàng)和為
,且
。
(1)求數(shù)列{
}的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列{
}的前n項(xiàng)和
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
預(yù)測(cè)人口的變化趨勢(shì)有很多方法,“直接推算法”使用的公式是
其中
為預(yù)測(cè)期內(nèi)年增長率,
,
為預(yù)測(cè)期人口數(shù),
為初期人口數(shù),
為預(yù)測(cè)期間隔年數(shù)。如果在某一時(shí)期有
,那么在這期間人口數(shù)
A.?dāng)[動(dòng)變化 | B.呈上升趨勢(shì) | C.呈下降趨勢(shì) | D.不變 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分10分)已知數(shù)列
的前
項(xiàng)和為
,
,
(I)求數(shù)列
的通項(xiàng)公式;
(II)設(shè)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
公差不為零的等差數(shù)列
中,
,且
、
、
成等比數(shù)列,則數(shù)列
的公差等于 ( )
查看答案和解析>>