(本小題滿分12分)已知等差數(shù)列{}的前n項(xiàng)和為,且。
(1)求數(shù)列{}的通項(xiàng)公式;
(2)設(shè),求數(shù)列{}的前n項(xiàng)和
解:(1)設(shè)等差數(shù)列{}的首項(xiàng)為,公差為d,由題意,
………………………………………………………….      2分
解得:所以,…………………………………………………… 6分
(2),…………………………………………………………8分
所以……………………….10分……………………………………………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知不等式的整數(shù)解構(gòu)成等差數(shù)列,且,則數(shù)列的第四項(xiàng)為(   )
A.3B.-1C.2 D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
當(dāng)均為正數(shù)時(shí),稱的“均倒數(shù)”.已知數(shù)列的各項(xiàng)均為正數(shù),且其前項(xiàng)的“均倒數(shù)”為
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),試比較的大;
(3)設(shè)函數(shù),是否存在最大的實(shí)數(shù),使當(dāng)時(shí),對(duì)于一切正整數(shù),都有恒成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和和通項(xiàng)滿足數(shù)列中,

(1)求數(shù)列,的通項(xiàng)公式;
(2)數(shù)列滿足是否存在正整數(shù),使得時(shí)恒成立?若存在,求的最小值;若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列滿足:已知存在常數(shù)p,q使數(shù)列為等
比數(shù)列。(13分)
(1)求常數(shù)p、q及的通項(xiàng)公式;
(2)解方程
(3)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分)
已知數(shù)列{an}是首項(xiàng)為,公比為的等比數(shù)列,設(shè) (nN*),數(shù)列{}滿足
(1)求數(shù)列{}的通項(xiàng)公式;
(2)求數(shù)列{}的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列滿足,則=_________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若數(shù)列 滿足,則         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
設(shè)數(shù)列滿足>0,,其前n 項(xiàng)和為,且

(1)  求之間的關(guān)系,并求數(shù)列的通項(xiàng)公式;
(2)  令
求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案