分析 (Ⅰ)由等差數(shù)列等差中項(xiàng),a3+a5=14,即可求得a4=7,a2=3,即可求得d=2和a1=1,即可求得{an}的通項(xiàng)公式;
(Ⅱ)求得數(shù)列{$\frac{1}{{{a_n}•{a_{n+1}}}}$}的通項(xiàng)公式,采用裂項(xiàng)法即可求得{$\frac{1}{{{a_n}•{a_{n+1}}}}$}前n項(xiàng)和Sn.
解答 解(Ⅰ)設(shè)等差數(shù)列{an}的公差為d.
由a3+a5=14,得a4=7.…(2分)
∵a4=a2+2d,即3+2d=7,
∴d=2…(4分)
∵a2=a1+d,
∴a1=3-2=1…(5分)
∴an=1+2(n-1)=2n-1…(6分)
(Ⅱ)$\frac{1}{{{a_n}•{a_{n+1}}}}=\frac{1}{{({2n-1})({2n+1})}}=\frac{1}{2}({\frac{1}{2n-1}-\frac{1}{2n+1}})$,…(9分)
${S_n}=\frac{1}{2}[{({1-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{5}})+({\frac{1}{5}-\frac{1}{7}})+…+({\frac{1}{2n-1}-\frac{1}{2n+1}})}]$,
=$\frac{1}{2}({1-\frac{1}{2n+1}})$,…(11分)
=$\frac{n}{2n+1}$.…(12分)
點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式及采用“裂項(xiàng)法”求數(shù)列的前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | 4 | C. | $\frac{1}{4}$或4 | D. | -$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一或第二或第三象限 | B. | 第二或第三或第四象限 | ||
C. | 第二象限或第三象限 | D. | 第三象限或第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3$\root{3}{7}$ | B. | 6 | C. | 3$\root{3}{9}$ | D. | 3$\root{3}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | $-\frac{5}{6}$ | C. | $\frac{4}{3}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|2≤x<10} | B. | {x|x≥2} | C. | {x|1≤x<2} | D. | {x|0<x<10} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com