【題目】如圖,直角梯形地塊ABCE,AF、EC是兩條道路,其中AF是以A為頂點、AE所在直線為對稱軸的拋物線的一部分,EC是線段.AB=2km,BC=6km,AE=BF=4km.計劃在兩條道路之間修建一個公園, 公園形狀為直角梯形QPRE(其中線段EQ和RP為兩條底邊).記QP=x(km),公園面積為S(km2).
(Ⅰ)以A為坐標原點,AE所在直線為x軸建立平面直角坐標系,求AF所在拋物線的標準方程;
(Ⅱ)求面積S(km2)關(guān)于x(km)的函數(shù)解析式;
(Ⅲ)求面積S(km2)的最大值.

【答案】解:(Ⅰ)設(shè)拋物線y2=2px ∵點F(4,2)在拋物線上,∴22=2p×4,∴2p=1,∴y2=x
(Ⅱ)設(shè)P(x2 , x) 則QE=AE﹣AQ=4﹣x2
∵∠PRE=∠C=45°∴PR=QE+x=4﹣x2+x (0<x<2)
(Ⅲ)S'(x)=﹣3x2+x+4令S'(x)=0則x=﹣1(舍去)或
時,S'>0,∴S(x)遞增;當 時,S'<0,∴S(x)遞減;
∴當 km時, km2

【解析】(Ⅰ)設(shè)拋物線y2=2px,根據(jù)點F(4,2)在拋物線上,可求AF所在拋物線的標準方程;(Ⅱ)公園形狀為直角梯形QPRE,所以利用面積公式可求,應(yīng)注意x的取值范圍;(Ⅲ)先求導(dǎo)函數(shù),令導(dǎo)數(shù)為0,得 ,利用函數(shù)在(0,2)上是單峰函數(shù),可求函數(shù)的最值.
【考點精析】關(guān)于本題考查的函數(shù)的最大(小)值與導(dǎo)數(shù),需要了解求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值比較,其中最大的是一個最大值,最小的是最小值才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(數(shù)學文卷·2017屆湖北省黃岡市高三上學期期末考試第16題) “中國剩余定理”又稱“孫子定理”.1852年英國來華傳教偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年,英國數(shù)學家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”. “中國剩余定理”講的是一個關(guān)于整除的問題,現(xiàn)有這樣一個整除問題:將2至2017這2016個數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列的項數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學生物興趣小組在學校生物園地種植了一批名貴樹苗,為了了解樹苗生長情況,從這批樹苗中隨機地測量了其中50棵樹苗的高度(單位:厘米).把這些高度列成了如下的頻率分布表:

(1)在這批樹苗中任取一棵,其高度不低于80厘米的概率大約是多少?

(2)這批樹苗的平均高度大約是多少?(用各組的中間值代替各組數(shù)據(jù)的平均值)

(3)為了進一步獲得研究資料,若從組中移出一棵樹苗,從組中移出兩棵樹苗進行試驗研究,則組中的樹苗組中的樹苗同時被移出的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,決定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出場單價就降低0.02元,根據(jù)市場調(diào)查,銷售商一次訂購量不會超過600件.
(1)設(shè)一次訂購x件,服裝的實際出廠單價為p元,寫出函數(shù)p=f(x)的表達式;
(2)當銷售商一次訂購多少件服裝時,該廠獲得的利潤最大?其最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知為橢圓上的點,且,過點的動直線與圓相交于兩點,過點作直線的垂線與橢圓相交于點

(1)求橢圓的離心率;

(2)若,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題R,p:x∈R使 ,命題q:x∈R都有x2+x+1>0,給出下列結(jié)論:
①命題“p∧q”是真命題
②命題“命題“p∨q”是假命題
③命題“p∨q”是真命題
④命題“p∨q”是假命題
其中正確的是( )
A.②④
B.②③
C.③④
D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,小華和小明兩個小伙伴在一起做游戲,他們通過劃拳(剪刀、石頭、布)比賽決勝誰首先登上第3個臺階,他們規(guī)定從平地開始,每次劃拳贏的一方登上一級臺階,輸?shù)囊环皆夭粍樱骄謺r兩個人都上一級臺階,如果一方連續(xù)兩次贏,那么他將額外獲得一次上一級臺階的獎勵,除非已經(jīng)登上第3個臺階,當有任何一方登上第3個臺階時,游戲結(jié)束,記此時兩個小伙伴劃拳的次數(shù)為

(1)求游戲結(jié)束時小華在第2個臺階的概率;

(2)求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)是定義在R上的函數(shù),且對任意的x、y都有f(x+y)=f(x)+f(y)﹣1成立.當x>0時,f(x)>1.
(1)若f(4)=5,求f(2);
(2)證明:f(x)在R上是增函數(shù);
(3)若f(4)=5,解不等式f(3m2﹣m﹣2)<3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著生活水平的提高,人們對空氣質(zhì)量的要求越來越高,某機構(gòu)為了解公眾對“車輛限行”的態(tài)度,隨機抽查,并將調(diào)查情況進行整理后制成下表:

年齡(歲)

頻數(shù)

贊成人數(shù)

(1)世界聯(lián)合國衛(wèi)生組織規(guī)定: 歲為青年, 為中年,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫以下列聯(lián)表:

青年人

中年人

合計

不贊成

贊成

合計

(2)判斷能否在犯錯誤的概率不超過的前提下,認為贊成“車柄限行”與年齡有關(guān)?

附: ,其中

獨立檢驗臨界值表:

(3)若從年齡的被調(diào)查中各隨機選取人進行調(diào)查,設(shè)選中的兩人中持不贊成“車輛限行”態(tài)度的人員為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案