【題目】某中學(xué)生物興趣小組在學(xué)校生物園地種植了一批名貴樹苗,為了了解樹苗生長(zhǎng)情況,從這批樹苗中隨機(jī)地測(cè)量了其中50棵樹苗的高度(單位:厘米).把這些高度列成了如下的頻率分布表:

(1)在這批樹苗中任取一棵,其高度不低于80厘米的概率大約是多少?

(2)這批樹苗的平均高度大約是多少?(用各組的中間值代替各組數(shù)據(jù)的平均值)

(3)為了進(jìn)一步獲得研究資料,若從組中移出一棵樹苗,從組中移出兩棵樹苗進(jìn)行試驗(yàn)研究,則組中的樹苗組中的樹苗同時(shí)被移出的概率是多少?

【答案】解:(I高度不低于80厘米的頻數(shù)是124=16,

高度不低于80厘米樹苗的概率為.…………………3

(2)樹苗的平均高度

………………6

(3)設(shè)[4050)組中的樹苗為A、B, [90,100] 組中的樹苗為C、DE、F,則基本事件總數(shù)為12,它們是: ACDACE、ACF、ADE、ADF、AEF

BCD、BCE、BCFBDE、BDFBEF ………………12

而滿足A、C同時(shí)被移出的事件為ACDACE、ACF3………………13

樹苗A和樹苗C同時(shí)被移出的概率………………14

【解析】略

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).
(Ⅰ)求證:EF∥平面CB1D1
(Ⅱ)求證:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的連續(xù)函數(shù)g(x)滿足:①當(dāng)x>0時(shí),g′(x)>0恒成立(g′(x)為函數(shù)g(x)的導(dǎo)函數(shù));②對(duì)任意的x∈R都有g(shù)(x)=g(﹣x),又函數(shù)f(x)滿足:對(duì)任意的x∈R,都有 成立.當(dāng) 時(shí),f(x)=x3﹣3x.若關(guān)于x的不等式g[f(x)]≤g(a2﹣a+2)對(duì)x∈[﹣ , ]恒成立,則a的取值范圍是(
A.a∈R
B.0≤a≤1
C.
D.a≤0或a≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)的坐標(biāo)分別為,直線相交于點(diǎn),且它們的斜率之積是,點(diǎn)的軌跡為曲線.

(Ⅰ)求的方程;

(Ⅱ)過點(diǎn)作直線交曲線兩點(diǎn),交軸于點(diǎn),若, ,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線 的右焦點(diǎn)為F(2,0),設(shè)A、B為雙曲線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),AF的中點(diǎn)為M,BF的中點(diǎn)為N,若原點(diǎn)O在以線段MN為直徑的圓上,直線AB的斜率為 ,則雙曲線的離心率為(
A.4
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如下表, 的導(dǎo)函數(shù)的圖象如圖所示,下列關(guān)于的命題:

-1

0

4

5

1

2

2

1

①函數(shù)的極大值點(diǎn)為0,4;

②函數(shù)在[0,2]上是減函數(shù);

③如果當(dāng)時(shí), 的最大值是2,那么t的最大值為4;

④當(dāng)1<a<2時(shí),函數(shù)有4個(gè)零點(diǎn).

其中正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進(jìn)行射擊比賽,各射擊4局,每局射擊10次,射擊命中目標(biāo)得1分,未命中目標(biāo)得0分.兩人4局的得分情況如下:

(1)已知在乙的4局比賽中隨機(jī)選取1局時(shí),此局得分小于6分的概率不為零,且在4局比賽中,乙的平均得分高于甲的平均得分,求的值;

(2)如果 ,從甲、乙兩人的4局比賽中隨機(jī)各選取1局,并將其得分分別記為,求的概率;

(3)在4局比賽中,若甲、乙兩人的平均得分相同,且乙的發(fā)揮更穩(wěn)定,寫出的所有可能取值.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形地塊ABCE,AF、EC是兩條道路,其中AF是以A為頂點(diǎn)、AE所在直線為對(duì)稱軸的拋物線的一部分,EC是線段.AB=2km,BC=6km,AE=BF=4km.計(jì)劃在兩條道路之間修建一個(gè)公園, 公園形狀為直角梯形QPRE(其中線段EQ和RP為兩條底邊).記QP=x(km),公園面積為S(km2).
(Ⅰ)以A為坐標(biāo)原點(diǎn),AE所在直線為x軸建立平面直角坐標(biāo)系,求AF所在拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)求面積S(km2)關(guān)于x(km)的函數(shù)解析式;
(Ⅲ)求面積S(km2)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線l:y=k(x+1)(k≠0)與橢圓3x2+y2=a2(a>0)相交于A、B兩個(gè)不同的點(diǎn),與x軸相交于點(diǎn)C,記O為坐標(biāo)原點(diǎn). (Ⅰ)證明:a2 ;
(Ⅱ)若 ,求△OAB的面積取得最大值時(shí)的橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案