【題目】已知四棱錐中,底面為正方形,為正三角形,是的中點(diǎn),過的平面平行于平面,且平面與平面的交線為,與平面的交線為.
(1)在圖中作出四邊形(不必說出作法和理由);
(2)若,四棱錐的體積為,求點(diǎn)到平面的距離.
【答案】(1)見解析;(2)
【解析】
(1)根據(jù)面面平行的判定定理,取中點(diǎn),中點(diǎn),中點(diǎn),即可得到所求四邊形;
(2)由已知可證得平面,進(jìn)而可證得平面,由體積公式可求得邊長,因?yàn)?/span>,借助等體積轉(zhuǎn)換即可求得到平面的距離,即為結(jié)果.
解:(1)如圖,四邊形即為所求,其中為中點(diǎn),為中點(diǎn),為中點(diǎn).
(2)連接,
依題意:,所以,
則,又因?yàn)?/span>且,
所以平面,則,
因?yàn)?/span>為正三角形且為中點(diǎn),
所以平面.
設(shè),則,解得,則,,
所以,
設(shè)到平面的距離為,,所以,解得,
即點(diǎn)到平面的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中.
(1)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;
(2)若對(duì)任意的(為自然對(duì)數(shù)的底數(shù))都有≥成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年慶祝中華人民共和國成立70周年閱兵式彰顯了中華民族從站起來、富起來邁向強(qiáng)起來的雄心壯志.閱兵式規(guī)模之大、類型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強(qiáng)軍成就.裝備方陣堪稱“強(qiáng)軍利刃”“強(qiáng)國之盾”,見證著人民軍隊(duì)邁向世界一流軍隊(duì)的堅(jiān)定步伐.此次大閱兵不僅得到了全中國人的關(guān)注,還得到了無數(shù)外國人的關(guān)注.某單位有10位外國人,其中關(guān)注此次大閱兵的有8位,若從這10位外國人中任意選取3位做一次采訪,則被采訪者中至少有2位關(guān)注此次大閱兵的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求圓的普通方程和直線的直角坐標(biāo)方程;
(2)設(shè)直線與軸, 軸分別交于兩點(diǎn),點(diǎn)是圓上任一點(diǎn),求兩點(diǎn)的極坐標(biāo)和面積的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將曲線(為參數(shù)) 上任意一點(diǎn)經(jīng)過伸縮變換后得到曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線交于兩點(diǎn),,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】足球運(yùn)動(dòng)被譽(yù)為“世界第一運(yùn)動(dòng)”.為推廣足球運(yùn)動(dòng),某學(xué)校成立了足球社團(tuán)由于報(bào)名人數(shù)較多,需對(duì)報(bào)名者進(jìn)行“點(diǎn)球測(cè)試”來決定是否錄取,規(guī)則如下:
(1)下表是某同學(xué)6次的訓(xùn)練數(shù)據(jù),以這150個(gè)點(diǎn)球中的進(jìn)球頻率代表其單次點(diǎn)球踢進(jìn)的概率.為加入足球社團(tuán),該同學(xué)進(jìn)行了“點(diǎn)球測(cè)試”,每次點(diǎn)球是否踢進(jìn)相互獨(dú)立,將他在測(cè)試中所踢的點(diǎn)球次數(shù)記為,求;
(2)社團(tuán)中的甲、乙、丙三名成員將進(jìn)行傳球訓(xùn)練,從甲開始隨機(jī)地將球傳給其他兩人中的任意一人,接球者再隨機(jī)地將球傳給其他兩人中的任意一人,如此不停地傳下去,且假定每次傳球都能被接到.記開始傳球的人為第1次觸球者,接到第n次傳球的人即為第次觸球者,第n次觸球者是甲的概率記為.
(i)求,,(直接寫出結(jié)果即可);
(ii)證明:數(shù)列為等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列為正項(xiàng)等比數(shù)列,為的前項(xiàng)和,若,.
(1)求數(shù)列的通項(xiàng)公式;
(2)從三個(gè)條件:①;②;③中任選一個(gè)作為已知條件,求數(shù)列的前項(xiàng)和.
注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在全民抗擊新冠肺炎疫情期間,北京市開展了“停課不停學(xué)”活動(dòng),此活動(dòng)為學(xué)生提供了多種網(wǎng)絡(luò)課程資源以供選擇使用.活動(dòng)開展一個(gè)月后,某學(xué)校隨機(jī)抽取了高三年級(jí)的甲、乙兩個(gè)班級(jí)進(jìn)行網(wǎng)絡(luò)問卷調(diào)查,統(tǒng)計(jì)學(xué)生每天的學(xué)習(xí)時(shí)間,將樣本數(shù)據(jù)分成五組,并整理得到如下頻率分布直方圖:
(1)已知該校高三年級(jí)共有600名學(xué)生,根據(jù)甲班的統(tǒng)計(jì)數(shù)據(jù),估計(jì)該校高三年級(jí)每天學(xué)習(xí)時(shí)間達(dá)到5小時(shí)及以上的學(xué)生人數(shù);
(2)已知這兩個(gè)班級(jí)各有40名學(xué)生,從甲、乙兩個(gè)班級(jí)每天學(xué)習(xí)時(shí)間不足4小時(shí)的學(xué)生中隨機(jī)抽取3人,記從甲班抽到的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望;
(3)記甲、乙兩個(gè)班級(jí)學(xué)生每天學(xué)習(xí)時(shí)間的方差分別為,,試比較與的大小.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,橢圓的右準(zhǔn)線為直線,左頂點(diǎn)為,右焦點(diǎn)為. 已知斜率為2的直線經(jīng)過點(diǎn),與橢圓相交于兩點(diǎn),且到直線的距離為
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過的直線與直線分別相交于兩點(diǎn),且,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com