【題目】在全民抗擊新冠肺炎疫情期間,北京市開展了“停課不停學(xué)”活動,此活動為學(xué)生提供了多種網(wǎng)絡(luò)課程資源以供選擇使用.活動開展一個月后,某學(xué)校隨機(jī)抽取了高三年級的甲、乙兩個班級進(jìn)行網(wǎng)絡(luò)問卷調(diào)查,統(tǒng)計學(xué)生每天的學(xué)習(xí)時間,將樣本數(shù)據(jù)分成五組,并整理得到如下頻率分布直方圖:
(1)已知該校高三年級共有600名學(xué)生,根據(jù)甲班的統(tǒng)計數(shù)據(jù),估計該校高三年級每天學(xué)習(xí)時間達(dá)到5小時及以上的學(xué)生人數(shù);
(2)已知這兩個班級各有40名學(xué)生,從甲、乙兩個班級每天學(xué)習(xí)時間不足4小時的學(xué)生中隨機(jī)抽取3人,記從甲班抽到的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望;
(3)記甲、乙兩個班級學(xué)生每天學(xué)習(xí)時間的方差分別為,,試比較與的大小.(只需寫出結(jié)論)
【答案】(1);(2)分布列見解析,數(shù)學(xué)期望為1;(3)
【解析】
(1)根據(jù)甲班的統(tǒng)計數(shù)據(jù),可求出每天學(xué)習(xí)時間達(dá)到5小時及以上的學(xué)生的頻率之和,進(jìn)而乘以600,可求出答案;
(2)計算可得甲、乙兩班每天學(xué)習(xí)時間不足4小時的學(xué)生人數(shù)分別為,,從而可知可取的值為,然后求出三種情形下的概率,進(jìn)而可列出分布列,求出數(shù)學(xué)期望;
(3)由甲班學(xué)生每天學(xué)習(xí)時間更集中,可知.
(1)根據(jù)甲班的統(tǒng)計數(shù)據(jù),該校高三年級每天學(xué)習(xí)時間達(dá)到5小時及以上的學(xué)生人數(shù)約為;
(2)甲班每天學(xué)習(xí)時間不足4小時的學(xué)生人數(shù)為,
乙班每天學(xué)習(xí)時間不足4小時的學(xué)生人數(shù)為,
從甲班抽到的學(xué)生人數(shù)可取的值為,
則,,,
所以的分布列為:
0 | 1 | 2 | |
則的數(shù)學(xué)期望為:.
(3)結(jié)合頻率分布直方圖,可知甲班學(xué)生每天學(xué)習(xí)時間更集中,所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸,建立極坐標(biāo)系,點的極坐標(biāo),直線經(jīng)過點,且傾斜角為.
(1)寫出曲線的直角坐標(biāo)方程和直線的標(biāo)準(zhǔn)參數(shù)方程;
(2)直線與曲線交于兩點,直線的參數(shù)方程為(t為參數(shù)),直線與曲線交于兩點,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,底面為正方形,為正三角形,是的中點,過的平面平行于平面,且平面與平面的交線為,與平面的交線為.
(1)在圖中作出四邊形(不必說出作法和理由);
(2)若,四棱錐的體積為,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖,給出了利用秦九韶算法求某多項式值的一個實例,若輸入x的值為2,則輸出的值為( )
A.80B.192C.448D.36
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國電子商務(wù)行業(yè)迎來了蓬勃發(fā)展的新機(jī)遇,但是電子商務(wù)行業(yè)由于缺乏監(jiān)管,服務(wù)質(zhì)量有待提高.某部門為了對本地的電商行業(yè)進(jìn)行有效監(jiān)管,調(diào)查了甲、乙兩家電商的某種同類產(chǎn)品連續(xù)十天的銷售額(單位:萬元),得到如下莖葉圖:
甲 | 乙 | |||||
7 | 5 | 10 | 7 | |||
9 | 5 | 3 | 11 | 5 | 7 | 8 |
8 | 6 | 12 | 3 | 5 | ||
4 | 2 | 13 | 2 | 6 | 9 | |
1 | 14 | 8 |
(1)根據(jù)莖葉圖判斷甲、乙兩家電商對這種產(chǎn)品的銷售誰更穩(wěn)定些?
(2)為了綜合評估本地電商的銷售情況,從甲、乙兩家電商十天的銷售數(shù)據(jù)中各抽取兩天的銷售數(shù)據(jù),其中銷售額不低于120萬元的天數(shù)分別記為,令,求隨機(jī)變量Y的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, , .
(1)若是的充分不必要條件,求實數(shù)的取值范圍;
(2)若,“”為真命題,“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若都屬于區(qū)間且,,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前,我國老年人口比例不斷上升,造成日趨嚴(yán)峻的人口老齡化問題.2019年10月12日,北京市老齡辦、市老齡協(xié)會聯(lián)合北京師范大學(xué)中國公益研究院發(fā)布《北京市老齡事業(yè)發(fā)展報告(2018)》,相關(guān)數(shù)據(jù)有如下圖表.規(guī)定年齡在15歲至59歲為“勞動年齡”,具備勞動力,60歲及以上年齡為“老年人”,據(jù)統(tǒng)計,2018年底北京市每2.4名勞動力撫養(yǎng)1名老年人.
(Ⅰ)請根據(jù)上述圖表計算北京市2018年戶籍總?cè)丝跀?shù)和北京市2018年的勞動力數(shù);(保留兩位小數(shù))
(Ⅱ)從2014年起,北京市老齡人口與年份呈線性關(guān)系,比照2018年戶籍老年人人口年齡構(gòu)成,預(yù)計到2020年年底,北京市90以上老人達(dá)到多少人?(精確到1人)
(附:對于一組數(shù)據(jù)其回歸直線的斜率和截距的最小二乘法估計分別為:,.,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com