設(shè)f(x)=x2+bx+c(b,c∈R),且A={x|x=f(x),x∈R},B={x|x=f[f(x)],x∈R,如果A是只有一個元素的集合,則A與B的關(guān)系為

[  ]

A.A=B

B.AB

C.BA

D.A∩B=

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:山西省康杰中學2011-2012學年高二下學期期中考試數(shù)學文科試題 題型:013

設(shè)f(x)=x2bxc,不等式f(x)<0的解集是(-1,3),若f(7+|t|)>f(1+t2),則實數(shù)t的取值范圍是

[  ]

A.(-1,2)

B.(-3,3)

C.(2,3)

D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學 來源:江西省南昌二中2012屆高三第三次月考數(shù)學理科試題 題型:013

設(shè)f(x)=x2+bx+c(x∈R),且滿足,對任意正數(shù)a,下面不等式恒成立的是

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年普通高等學校招生全國統(tǒng)一考試、理科數(shù)學(山東卷) 題型:044

已知函數(shù)f(x)=lnx-ax--1(a∈R).

(Ⅰ)當a≤時,討論f(x)的單調(diào)性;

(Ⅱ)設(shè)f(x)=x2-2bx+4,當a=時,若對任意存在使f(x1)≥g(x2),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=x2bxc,且f(-1)=f(3),則                               (  )

A.f(1)>cf(-1)                 B.f(1)<cf(-1)

C.f(1)>f(-1)>c                 D.f(1)<f(-1)<c

查看答案和解析>>

科目:高中數(shù)學 來源:2012年人教A版高中數(shù)學必修三1.1算法與程序框圖練習卷(一)(解析版) 題型:選擇題

對于解方程x2-2x-3=0的下列步驟:

①設(shè)f(x)=x2-2x-3

②計算方程的判別式Δ=22+4×3=16>0

③作f(x)的圖象

④將a=1,b=-2,c=-3代入求根公式

x=,得x1=3,x2=-1.

其中可作為解方程的算法的有效步驟為(  )

A.①②                            B.②③

C.②④                D.③④

 

查看答案和解析>>

同步練習冊答案