18.函數(shù)f(x)=x2+b•x+c•3x(b,c∈R),若{x∈R|f(x)=0}={x∈R|f(f(x))=0}≠∅,則b+c的取值范圍為[0,4).

分析 求出c=0,求出f(x)的解析式,通過討論b,求出滿足條件的b的范圍,即b+c的范圍.

解答 解:設(shè)x0∈{x∈R|f(x)=0}={x∈R|f(f(x))=0},
則$\left\{\begin{array}{l}{f{(x}_{0})=0}\\{f(f{(x}_{0}))=0}\end{array}\right.$,故f(0)=0,故c=0,
∴f(x)=x2+bx,
①b=0時,{x∈R|f(x)=0}={x∈R|f(f(x))=0},
②b≠0時,{x|f(x)=0}={0,-b},
則f(f(x))=x(x+b)(x2+bx+b)=0僅有0,-b兩個根,
∴b2-4b<0,解得:0<b<4,
綜上,b∈[0,4),b+c∈[0,4),
故答案為:[0,4).

點評 本題考查了二次函數(shù)的性質(zhì),考查分類討論思想,轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.不等式$\frac{1}{x}$<-1的解集為( 。
A.{x|-1<x<0}B.{x|x<-1}C.{x|x>-1}D.{x|x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知平面內(nèi)不共線的四點O,A,B,C滿足$\overrightarrow{OB}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OC}$,則$|\overrightarrow{AB}|:|\overrightarrow{BC}|$=( 。
A.1:3B.3:1C.1:2D.2:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)實數(shù)x,y滿足$\left\{\begin{array}{l}{y≤x}\\{y≥0}\\{y≤-2x+6}\end{array}\right.$,則x+3y的最大值為,8;若x2+4y2≤a恒成立,則實數(shù)a為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列函數(shù)的值域:
(1)f(x)=2sin(x+$\frac{π}{6}$),-$\frac{π}{2}$≤x≤$\frac{π}{2}$
(2)y=cos2x-sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.不等式$\frac{3x}{2x+1}≤1$的解集為( 。
A.(-∞,1]B.$[{-\frac{1}{2},1}]$C.$({-\frac{1}{2},1}]$D.$({-∞,-\frac{1}{2}})∪[{1,+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.5個人排成一排,要求甲排在中間,乙不排在兩端,記滿足條件的所有不同排法的種數(shù)為m.
(1)求m的值;
(2)求$(\sqrt{x}-\frac{2}{x})^{\frac{3m}{4}}$的展開式的常數(shù)項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,過點E(1,0)的直線與圓O:x2+y2=4相交于A、B兩點,過點C(2,0)且與AB垂直的直線與圓O的另一交點為D.
(1)當(dāng)點B坐標為(0,-2)時,求直線CD的方程;
(2)求四邊形ABCD面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若圓x2+y2-2kx+2y+2=0(k>0)與兩坐標軸無公共點,那么實數(shù)k的取值范圍為( 。
A.-1<k<1B.1<k<$\sqrt{2}$C.1<k<2D.$\sqrt{2}$<k<2

查看答案和解析>>

同步練習(xí)冊答案