【題目】某公司招聘員工,指定三門考試課程,有兩種考試方案.方案一:考試三門課程,至少有兩門及格為考試通過;方案二:在三門課程中,隨機(jī)選取兩門,這兩門都及格為考試通過.假設(shè)某應(yīng)聘者對(duì)三門指定課程考試及格的概率分別是,,,且三門課程考試是否及格相互之間沒有影響.
(1)分別求該應(yīng)聘者用方案一和方案二時(shí)考試通過的概率;
(2)試比較該應(yīng)聘者在上述兩種方案下考試通過的概率的大小,并說明理由.
【答案】(1),;(2),理由見解析.
【解析】
(1)設(shè)三門考試課程考試通過的事件分別為,,,方案一即可表示為,方案二,先考慮隨機(jī)選取兩門的概率為,后再計(jì)算這兩門都及格的概率;
(2)為了比較該應(yīng)聘者在上述兩種方案下考試通過的概率的大小,可考慮這兩個(gè)概率的差值與0比較即可.
解:設(shè)三門考試課程考試通過的事件分別為,,,相應(yīng)的概率為,,,
(1)考試三門課程,至少有兩門及格的事件可表示為,
設(shè)其概率為,則,
設(shè)在三門課程中,隨機(jī)選取兩門,這兩門都及格的概率為,
則.
(2)
,
由,得,即,
即方案一考試通過的概率大于等于方案二的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四面體P﹣ABC中,PA,PB=PC=AB=AC=2,BC=2,動(dòng)點(diǎn)Q在△ABC的內(nèi)部(含邊界),設(shè)∠PAQ=α,二面角P﹣BC﹣A的平面角的大小為β,△APQ和△BCQ的面積分別為S1和S2,且滿足,則S2的最大值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐中,底面△是邊長(zhǎng)為2的正三角形,,底面,點(diǎn)分別為,的中點(diǎn).
(1)求證:平面平面;
(2)在線段上是否存在點(diǎn),使得三棱錐體積為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】家具公司制作木質(zhì)的書桌和椅子,需要木工和漆工兩道工序,已知木工平均四個(gè)小時(shí)做一把椅子,八個(gè)小時(shí)做一張書桌,該公司每星期木工最多有8000個(gè)工作時(shí);漆工平均兩小時(shí)漆一把椅子、一小時(shí)漆一張書桌,該公司每星期漆工最多有1300個(gè)工作時(shí),又已知制作一把椅子和一張書桌的利潤(rùn)分別是15元和20元,試根據(jù)以上條件,問怎樣安排生產(chǎn)能獲得最大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩高射炮同時(shí)向一架敵機(jī)射擊,已知甲擊中敵機(jī)的概率是0.6,乙擊中敵機(jī)的概率為0.5,求敵機(jī)被擊中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是某縣參加2007年高考的學(xué)生身高條形統(tǒng)計(jì)圖,從左到右的各條形圖表示學(xué)生人數(shù)依次記為A1、A2、…A10(如A2表示身高(單位:cm)在[150,155內(nèi)的人數(shù)].圖2是統(tǒng)計(jì)圖1中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個(gè)算法流程圖.現(xiàn)要統(tǒng)計(jì)身高在160~180cm(含160cm,不含180cm)的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是
A.i<6B.i<7C.i<8D.i<9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,過點(diǎn)且不過點(diǎn)的直線與橢圓交于,兩點(diǎn),直線與直線交于點(diǎn).
(Ⅰ)若垂直于軸,求直線的斜率;
(Ⅱ)試判斷直線與直線的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市隨機(jī)選取位顧客,記錄了他們購買甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計(jì)表,其中“√”表示購買,“×”表示未購買.
甲 | 乙 | 丙 | 丁 | |
√ | × | √ | √ | |
× | √ | × | √ | |
√ | √ | √ | × | |
√ | × | √ | × | |
85 | √ | × | × | × |
× | √ | × | × |
(Ⅰ)估計(jì)顧客同時(shí)購買乙和丙的概率;
(Ⅱ)估計(jì)顧客在甲、乙、丙、丁中同時(shí)購買中商品的概率;
(Ⅲ)如果顧客購買了甲,則該顧客同時(shí)購買乙、丙、丁中那種商品的可能性最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com