14.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,以F2為圓心與雙曲線的漸近線相切,若圓F2和雙曲線的一個交點(diǎn)為M,滿足MF1⊥MF2,則雙曲線的離心率是$\frac{5}{3}$.

分析 設(shè)F(c,0),漸近線方程為y=$\frac{a}$x,運(yùn)用點(diǎn)到直線的距離公式可得焦點(diǎn)到漸近線的距離為b,即為圓F的半徑,再由MF1⊥MF2,結(jié)合雙曲線的定義,利用勾股定理建立方程關(guān)系,運(yùn)用a,b,c的關(guān)系和離心率公式,即可得到所求值.

解答 解:設(shè)F2(c,0),漸近線方程為y=$\frac{a}$x,
可得F2到漸近線bx-ay=0的距離d=$\frac{bc}{\sqrt{{a}^{2}+^{2}}}$=b,
即圓F2的半徑為b,
∵圓F2和雙曲線的一個交點(diǎn)為M,
∴MF1-MF2=2a,MF2=b,
∴MF1=2a+b,
∵M(jìn)F1⊥MF2,
∴MF12+MF22=F1F22,
即(2a+b)2+b2=4c2=4a2+4b2
則4a2+4ab+b2=4a2+4b2,
即4ab=3b2,
則4a=3b,
則$\frac{a}$=$\frac{4}{3}$,
即離心率e=$\frac{c}{a}$=$\sqrt{\frac{{c}^{2}}{{a}^{2}}}$=$\sqrt{\frac{{a}^{2}+^{2}}{{a}^{2}}}$=$\sqrt{1+(\frac{a})^{2}}$=$\sqrt{1+\frac{16}{9}}$=$\sqrt{\frac{25}{9}}$=$\frac{5}{3}$,
故答案為:$\frac{5}{3}$.

點(diǎn)評 本題考查雙曲線的離心率的求法,注意運(yùn)用點(diǎn)到直線的距離公式,利用雙曲線的定義結(jié)合離心率的定義進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)i是虛數(shù)單位,$\overline{z}$表示復(fù)數(shù)z的共軛復(fù)數(shù),且滿足z+$\overline{z}$=z•$\overline{z}$=2,則z的虛部是(  )
A.1B.±iC.±1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)(x,y)滿足$\left\{\begin{array}{l}2x-y-1≥0\\ x+y-5≤0\\ x-2y+1≤0\end{array}$,向量$\overrightarrow a$=(1,-1),則$\overrightarrow a$•$\overrightarrow{OP}$的最大值是( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在運(yùn)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.30B.62C.126D.278

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)在左頂點(diǎn)與拋物線y2=2px(p>0)的焦點(diǎn)的距離為5,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為(-3,-6),則雙曲線的焦距為( 。
A.2$\sqrt{3}$B.2$\sqrt{5}$C.4$\sqrt{3}$D.4$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)F是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn),過點(diǎn)F向C的一條漸近線引垂線,垂足為M,交另一條漸近線于點(diǎn)N,若3$\overrightarrow{MF}$=$\overrightarrow{FN}$,則雙曲線C的離心率是$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,直棱柱ABC-A1B1C1中,AB=AC=2,AA1=BC=2$\sqrt{3}$,E是AA1中點(diǎn),D是AC的中點(diǎn),M是BB1上一點(diǎn),若DM∥平面B1CE,則$\frac{BM}{M{B}_{1}}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.判斷下列方程是否表示圓,若是,求出圓心和半徑.
(1)x2+y2-x+$\frac{1}{4}$=0;
(2)x2+y2+20x+162=0;
(3)x2+y2+4mx-2y+5m=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知3x=2,3y=4,3z=8,則x,y,z為( 。
A.等差數(shù)列B.等比數(shù)列
C.既是等差,又是等比數(shù)列D.都不是

查看答案和解析>>

同步練習(xí)冊答案