2.在一次馬拉松決賽中,30名運(yùn)動(dòng)員的成績(jī)(單位:分鐘)的莖葉圖如圖所示
13 0 0 3 4 5 6 6 8 8 8
14 1 1 1 2 2 2 3 3 4 4 5 5 5
15 0 1 2 2 3 3 3
若將運(yùn)動(dòng)員按成績(jī)由好到差編為1-30號(hào),在用系統(tǒng)抽樣方法從中抽取6人,則其中成績(jī)?cè)趨^(qū)間[130,151]上的運(yùn)動(dòng)員人數(shù)是( 。
A.3B.4C.5D.6

分析 將運(yùn)動(dòng)員按成績(jī)由好到差分為6組,成績(jī)?cè)赱130,151]內(nèi)的恰好有5組,從而得到用系統(tǒng)抽樣方法從中抽取6人,其中成績(jī)?cè)趨^(qū)間[130,151]上的運(yùn)動(dòng)員人數(shù)是5人.

解答 解:將運(yùn)動(dòng)員按成績(jī)由好到差分為6組,
則第一組(130,130,133,134,135),
第二組(136,136,138,138,138),
第三組(141,141,141,142,142),
第四組(142,143,143,144,144),
第五組(145,145,145,150,151),
第六組(152,152,153,153,153),
故成績(jī)?cè)赱130,151]內(nèi)的恰好有5組,
∴用系統(tǒng)抽樣方法從中抽取6人,則其中成績(jī)?cè)趨^(qū)間[130,151]上的運(yùn)動(dòng)員人數(shù)是5人.
故選:C.

點(diǎn)評(píng) 本題考查抽取的人數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意系統(tǒng)抽樣的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2017屆湖北省百所重點(diǎn)校高三聯(lián)合考試數(shù)學(xué)(理)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間和極值;

(2)證明:當(dāng)時(shí),函數(shù)沒(méi)有零點(diǎn)(提示:).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

將函數(shù)的圖像向左平移個(gè)單位,所得函數(shù)圖像的一條對(duì)稱(chēng)軸方程為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知數(shù)列{an}的前n項(xiàng)和構(gòu)成數(shù)列{bn},若bn=(2n-1)3n+4,則數(shù)列{an}的通項(xiàng)公式an=${a_n}=\left\{\begin{array}{l}7(n=1)\\ 4n•{3^{n-1}}(n≥2)\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若等比數(shù)列的各項(xiàng)均為正數(shù),前n項(xiàng)的和為S,前n項(xiàng)的積為P,前n項(xiàng)倒數(shù)的和為M,則有( 。
A.P=$\frac{S}{M}$B.P>$\frac{S}{M}$C.P2=($\frac{S}{M}$)nD.P2>($\frac{S}{M}$)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知a,b,c為銳角三角形ABC中角A,B,C所對(duì)的邊,若$B=\frac{π}{6}$,則$\frac{acosC-ccosA}$的取值范圍為( 。
A.(-2,2)B.(-2,1)C.(-1,1)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知復(fù)數(shù)z=cosθ+isinθ(0≤θ≤2π),求θ為何值時(shí),|1-i+z|取得最值.并求出它的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知平行四邊形ABCD滿(mǎn)足$\overrightarrow{AC}$=(-2,4),$\overrightarrow{AB}=(-\frac{5}{2},-\frac{3}{2})$,則$\overrightarrow{AD}$=( 。
A.$(\frac{1}{2},\frac{11}{2})$B.$(\frac{1}{2},\frac{1}{2})$C.$(\frac{5}{2},\frac{7}{2})$D.$(\frac{3}{2},\frac{7}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知f(x)=|x-1|+|x-a|(a∈R),g(x)=x+$\frac{1}{x}$+4(x<0)
(1)若a=3,求不等式f(x)≥4的解集;
(2)對(duì)?x1∈R,?x2∈(-∞,0)有f(x1)≥g(x2)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案