已知函數(shù)f(x)=
199x+1(x<1)
x2+2cx(x≥1)
,若f[f(0)]=8c,則c=
 
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知得f(0)=2,從而f[f(0)]=f(2)=4+4c=8c,由此能求出c=1.
解答: 解:∵函數(shù)f(x)=
199x+1(x<1)
x2+2cx(x≥1)
,f[f(0)]=8c,
∴f(0)=2,
f[f(0)]=f(2)=4+4c=8c,
解得c=1.
故答案為:1.
點評:本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某校高三數(shù)學競賽初賽考試后,對考生的成績進行統(tǒng)計(考生成績均不低于90分,滿分為150分),將成績按如下方式分成六組,第一組[90,100)、第二組[100,110)…,第六組[140,150],如圖為其頻率分布直方圖的一部分,若第四、五、六組的人數(shù)依次成等差數(shù)列,且第六組有4人.
(Ⅰ)求第四和第五組頻率,并補全頻率分布直方圖;
(Ⅱ)若不低于120分的同學進入決賽,不低于140分的同學為種子選手,完成下面2×2列聯(lián)表(即填寫空格處的數(shù)據(jù)),并判斷是否有99%的把握認為“進入決賽的同學成為種子選手與專家培訓有關(guān)”.
[120,140)[140,150]合計
參加培訓88
未參加培訓
合計4
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k00.250.150.100.050.0250.0100.0050.001
K01.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若等比數(shù)列{an}中,a3=12,a4=8
(Ⅰ)求首項a1和公比q;
(Ⅱ)求數(shù)列{an}的前8項和S8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的算法流程圖中(注:“x=x+2”也可寫成“x:=x+2”,均表示賦值語句),若輸入的x值為-3,則輸出的y值是( 。
A、
1
8
B、
1
2
C、2
D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)求值:[(
3
4
)0]-0.5+7.5×(
44
)2-(-
1
2
)-4+81
1
4

(2)已知ax=
6
-
5
(a>0),求
a3x-a-3x
ax-a-x
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)=a-
2
ex+1
(a∈R).
(1)確定f(x)的單調(diào)區(qū)間;
(2)求實數(shù)a,使f(x)是奇函數(shù),在此基礎(chǔ)上,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列等式中錯誤的是( 。
A、sin(π+α)=-sinα
B、cos(π-α)=cosα
C、cos(2π-α)=cosα
D、sin(2π+α)=sinα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果函數(shù)f(x)=
2
2x+1
+a是奇函數(shù),則a的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a1=2,且an+1=
2an
an+1
,求an

查看答案和解析>>

同步練習冊答案