【題目】已知正方體有8個(gè)不同頂點(diǎn),現(xiàn)任意選擇其中4個(gè)不同頂點(diǎn),然后將它們兩兩相連,可組成平面圖形成空間幾何體.在組成的空間幾何體中,可以是下列空間幾何體中的________.(寫出所有正確結(jié)論的編號)

①每個(gè)面都是直角三角形的四面體;

②每個(gè)面都是等邊三角形的四面體;

③每個(gè)面都是全等的直角三角形的四面體;

④有三個(gè)面為等腰直角三角形,有一個(gè)面為等邊三角形的四面體.

【答案】①②④

【解析】

畫出正方體的圖形,在幾何體中找出滿足結(jié)論的圖形即可.

解:

①每個(gè)面都是直角三角形的四面體;如:EABC,所以①正確;
②每個(gè)面都是等邊三角形的四面體;如EBGD,所以②正確;
③每個(gè)面都是全等的直角三角形的四面體:這是不可能的,③錯(cuò)誤;
④有三個(gè)面為等腰直角三角形,有一個(gè)面為等邊三角形的四面體.如:ABDE,所以④正確;
故答案為:①②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),上的動(dòng)點(diǎn),點(diǎn)滿足,點(diǎn)的軌跡為曲線

(1)求曲線的直角坐標(biāo)方程;

(2)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線相交于兩點(diǎn),設(shè)點(diǎn),已知,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(I)討論的單調(diào)性;

II)若有兩個(gè)極值點(diǎn),記過點(diǎn)的直線的斜率為,問:是否存在,使得?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=4alnx3x,且不等式fx+1≥4ax3ex,在(0+∞)上恒成立,則實(shí)數(shù)a的取值范圍(

A.B.C.(﹣0D.(﹣,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD中,△PAD為正三角形,ABCD,AB=2CD,∠BAD=90°,PACDE為棱PB的中點(diǎn)

1)求證:平面PAB⊥平面CDE;

2)若AD=CD=2,求點(diǎn)P到平面ADE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)是定義在(0+∞)上的可導(dǎo)函數(shù),滿足f1)=2,且,則不等式fx)﹣e33x1的解集為(  )

A.0,1B.0eC.1,+∞D.e,+∞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3-3x2+1,g(x)=,若方程g[f(x)]-a=0(a>0)有6個(gè)實(shí)數(shù)根(互不相同),則實(shí)數(shù)a的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,角A,BC的對邊分別為a,b,c,且2ccosB2a+b

1)求角C的大。

2)若ABC的面積等于,求ab的最小值.

查看答案和解析>>

同步練習(xí)冊答案