【題目】已知正方體有8個(gè)不同頂點(diǎn),現(xiàn)任意選擇其中4個(gè)不同頂點(diǎn),然后將它們兩兩相連,可組成平面圖形成空間幾何體.在組成的空間幾何體中,可以是下列空間幾何體中的________.(寫出所有正確結(jié)論的編號)
①每個(gè)面都是直角三角形的四面體;
②每個(gè)面都是等邊三角形的四面體;
③每個(gè)面都是全等的直角三角形的四面體;
④有三個(gè)面為等腰直角三角形,有一個(gè)面為等邊三角形的四面體.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),為上的動(dòng)點(diǎn),點(diǎn)滿足,點(diǎn)的軌跡為曲線.
(1)求曲線的直角坐標(biāo)方程;
(2)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線與的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線相交于兩點(diǎn),設(shè)點(diǎn),已知,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(I)討論的單調(diào)性;
(II)若有兩個(gè)極值點(diǎn)和,記過點(diǎn)的直線的斜率為,問:是否存在,使得?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4alnx﹣3x,且不等式f(x+1)≥4ax﹣3ex,在(0,+∞)上恒成立,則實(shí)數(shù)a的取值范圍( )
A.B.C.(﹣∞,0)D.(﹣∞,0]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,△PAD為正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E為棱PB的中點(diǎn)
(1)求證:平面PAB⊥平面CDE;
(2)若AD=CD=2,求點(diǎn)P到平面ADE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在(0,+∞)上的可導(dǎo)函數(shù),滿足f(1)=2,且,則不等式f(x)﹣e3﹣3x>1的解集為( )
A.(0,1)B.(0,e)C.(1,+∞)D.(e,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3-3x2+1,g(x)=,若方程g[f(x)]-a=0(a>0)有6個(gè)實(shí)數(shù)根(互不相同),則實(shí)數(shù)a的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且2ccosB=2a+b.
(1)求角C的大。
(2)若△ABC的面積等于,求ab的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com