19.設(shè)定義在R上的函數(shù)f(x)同時滿足以下條件:①f(x)+f(-x)=0;②f(x-1)=f(x+1);③當(dāng)0<x≤1時,f(x)=2x+1,則f(${\frac{1}{2}}$)+f(1)+f(${\frac{3}{2}}$)+f(2)+f(${\frac{5}{2}}$)+f(3)=7+$\sqrt{2}$.

分析 由已知得f(x+2)=f(x),f(x)=-f(x),由此能求出f(${\frac{1}{2}}$)+f(1)+f(${\frac{3}{2}}$)+f(2)+f(${\frac{5}{2}}$)+f(3).

解答 解:∵定義在R上的函數(shù)f(x)同時滿足以下條件:
①f(x)+f(-x)=0;②f(x-1)=f(x+1);③當(dāng)0<x≤1時,f(x)=2x+1,
∴f(x+2)=f[(x+1)+1]=f[(x+1)-1]=f(x),
∴f(2)=f(0)=0,
f(3)=f(1)=21+1=3,
f($\frac{5}{2}$)=f($\frac{1}{2}$)=${2}^{\frac{1}{2}}+1$=$\sqrt{2}+1$,
f($\frac{3}{2}$)=f(-$\frac{1}{2}$)=-f($\frac{1}{2}$),
∴f(${\frac{1}{2}}$)+f(1)+f(${\frac{3}{2}}$)+f(2)+f(${\frac{5}{2}}$)+f(3)
=f($\frac{1}{2}$)+3-f($\frac{1}{2}$)+0+$\sqrt{2}+1$+3
=7+$\sqrt{2}$.
故答案為:7+$\sqrt{2}$.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.8+16πB.24+8πC.16+8πD.$\frac{64}{3}+8π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,已知a2=b2+c2-$\sqrt{3}$bc,則角A的大小為(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,a=7,b=5,A=80°,則此三角形有幾解( 。
A.一解B.兩解C.無解D.一解或兩解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.給定兩個向量$\overrightarrow a$=(3,4),$\overrightarrow b$=(2,-1),且($\overrightarrow{a}$+m$\overrightarrow$)⊥($\overrightarrow{a}$-$\overrightarrow$),則實數(shù)m=$\frac{23}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A,B,C的對邊分別為a,b,c.已知△ABC的面積為3sinA,周長為4($\sqrt{2}$+1),且sinB+sinC=$\sqrt{2}$sinA.
(1)求a及cosA的值;
(2)求cos(2A-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.銳角三角形中,a=2bsinA.
①求角Β的大。
②若a=3$\sqrt{3}$,c=5,求邊b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在復(fù)平面內(nèi),復(fù)數(shù)z滿足(i+1)•z=i2013(i為虛數(shù)單位),則復(fù)數(shù)z所表示的點在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,且$\sqrt{3}$bsinA-acosB-2a=0.
(Ⅰ)求∠B的大;
(Ⅱ)若b=$\sqrt{7}$,△ABC的面積為$\frac{\sqrt{3}}{2}$,求a,c的值.

查看答案和解析>>

同步練習(xí)冊答案