【題目】設(shè)E,F分別是正方體ABCD﹣A1B1C1D1的棱DC上兩點(diǎn),且AB=2,EF=1,給出下列四個命題:
①三棱錐D1﹣B1EF的體積為定值;
②異面直線D1B1與EF所成的角為45°;
③D1B1⊥平面B1EF;
④直線D1B1與平面B1EF所成的角為60°.
其中正確的命題為_____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)畫出函數(shù)圖象并寫出頂點(diǎn)坐標(biāo)和對稱軸;
(2)判斷奇偶性,并指出單調(diào)區(qū)間.
(3)求函數(shù)在時的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1和圖2中所有的正方形都全等,圖1中的正方形放在圖2中的①②③④某一位置,所組成的圖形能圍成正方體的概率是( )
A. B. C. D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地通過市場調(diào)查得到西紅柿種植成本(單位:元/千克)與上市時間(單位:天)的數(shù)據(jù)如下表:
時間 | |||
種植成本 |
(1)根據(jù)上表數(shù)據(jù),發(fā)現(xiàn)二次函數(shù)能夠比較準(zhǔn)確描述與的變化關(guān)系,請求出函數(shù)的解析式;
(2)利用選取的函數(shù),求西紅柿最低種植成本及此時的上市天數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)對任意實(shí)數(shù)x、y恒有,當(dāng)x>0時,f(x)<0,且.
(1)判斷的奇偶性;
(2)求在區(qū)間[-3,3]上的最大值;
(3)若對所有的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,平面平面,四邊形和四邊形都是正方形,且邊長為,是的中點(diǎn).
(1)求證:直線平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)當(dāng)時,若對任意均有成立,求實(shí)數(shù)的取值范圍;
(2)設(shè)直線與曲線和曲線相切,切點(diǎn)分別為,,其中.
①求證:;
②當(dāng)時,關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的離心率是,點(diǎn)在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com