【題目】過(guò)圓 : 上的點(diǎn) 作 軸的垂線,垂足為 ,點(diǎn) 滿足 .當(dāng) 在 上運(yùn)動(dòng)時(shí),記點(diǎn) 的軌跡為 .
(1)求 的方程;
(2)過(guò)點(diǎn) 的直線 與交于 , 兩點(diǎn),與圓 交于 , 兩點(diǎn),求 的取值范圍.
【答案】(1).(2).
【解析】試題分析:(1)由代入向量計(jì)算出 的軌跡為(2)利用韋達(dá)定理和弦長(zhǎng)公式計(jì)算得,化簡(jiǎn)運(yùn)用定義域給出范圍
解析:(1)設(shè)點(diǎn)坐標(biāo),點(diǎn)坐標(biāo),點(diǎn)坐標(biāo),
由可得
因?yàn)?/span>在圓:上運(yùn)動(dòng),
所以點(diǎn)的軌跡的方程為.
(2)當(dāng)直線的斜率不存在時(shí),直線的方程為,此時(shí),,
所以.
當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,,,
聯(lián)立方程組消去,整理得,
因?yàn)辄c(diǎn)在橢圓內(nèi)部,所以直線與橢圓恒交于兩點(diǎn),
由韋達(dá)定理,得,,
所以,
,
在圓:,圓心到直線的距離為,
所以,
所以.
又因?yàn)楫?dāng)直線的斜率不存在時(shí),,
所以的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某射擊運(yùn)動(dòng)員進(jìn)行射擊訓(xùn)練,前三次射擊在靶上的著彈點(diǎn)剛好是邊長(zhǎng)為的等邊三角形的三個(gè)頂點(diǎn).
(Ⅰ)第四次射擊時(shí),該運(yùn)動(dòng)員瞄準(zhǔn)區(qū)域射擊(不會(huì)打到外),則此次射擊的著彈點(diǎn)距的距離都超過(guò)的概率為多少?(彈孔大小忽略不計(jì))
(Ⅱ) 該運(yùn)動(dòng)員前三次射擊的成績(jī)(環(huán)數(shù))都在區(qū)間內(nèi),調(diào)整一下后,又連打三槍,其成績(jī)(環(huán)數(shù))都在區(qū)間內(nèi).現(xiàn)從這次射擊成績(jī)中隨機(jī)抽取兩次射擊的成績(jī)(記為和)進(jìn)行技術(shù)分析.求事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)證明:當(dāng)時(shí),函數(shù)在上是單調(diào)函數(shù);
(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為提高員工的綜合素質(zhì),聘請(qǐng)專業(yè)機(jī)構(gòu)對(duì)員工進(jìn)行專業(yè)技術(shù)培訓(xùn),其中培訓(xùn)機(jī)構(gòu)費(fèi)用成本為12000元.公司每位員工的培訓(xùn)費(fèi)用按以下方式與該機(jī)構(gòu)結(jié)算:若公司參加培訓(xùn)的員工人數(shù)不超過(guò)30人時(shí),每人的培訓(xùn)費(fèi)用為850元;若公司參加培訓(xùn)的員工人數(shù)多于30人,則給予優(yōu)惠:每多一人,培訓(xùn)費(fèi)減少10元.已知該公司最多有60位員工可參加培訓(xùn),設(shè)參加培訓(xùn)的員工人數(shù)為人,每位員工的培訓(xùn)費(fèi)為元,培訓(xùn)機(jī)構(gòu)的利潤(rùn)為元.
(1)寫(xiě)出與 之間的函數(shù)關(guān)系式;
(2)當(dāng)公司參加培訓(xùn)的員工為多少人時(shí),培訓(xùn)機(jī)構(gòu)可獲得最大利潤(rùn)?并求最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)與,若對(duì)任意的,都存在,使得,則實(shí)數(shù)的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(且).
(1)判斷函數(shù)的奇偶性并說(shuō)明理由;
(2)當(dāng)時(shí),判斷函數(shù)在上的單調(diào)性,并利用單調(diào)性的定義證明;
(3)是否存在實(shí)數(shù),使得當(dāng)的定義域?yàn)?/span>時(shí),值域?yàn)?/span>?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的不等式的解集為,且中只有一個(gè)整數(shù),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:,點(diǎn)是橢圓內(nèi)且在軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn)(在第一象限),且.
(Ⅰ)若點(diǎn)為橢圓的下頂點(diǎn),求點(diǎn)的坐標(biāo);
(Ⅱ)當(dāng)(為坐標(biāo)原點(diǎn))的面積最大時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于四面體,有以下命題:①若AB=AC=AD,則AB,AC,AD與底面所成的角相等;②若AB⊥CD,AC⊥BD,則點(diǎn)A在底面BCD內(nèi)的射影是△BCD的內(nèi)心;③四面體的四個(gè)面中最多有四個(gè)直角三角形;④若四面體的6條棱長(zhǎng)都為1,則它的內(nèi)切球的表面積為,其中正確的命題是
A. ①③ B. ③④ C. ①②③ D. ①③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com