分析 設(shè)∠BAC=θ,周長為P,則可用θ的三角函數(shù)表示出AB和BC,進(jìn)而整理后根據(jù)正弦函數(shù)的性質(zhì)求的周長的最大值.
解答 解:設(shè)∠BAC=θ,周長為P,
則P=2AB+2BC=2(2Rcosθ+2Rsinθ)=4$\sqrt{2}$Rsin(θ+$\frac{π}{4}$)≤4$\sqrt{2}$R,
當(dāng)且僅當(dāng)θ=$\frac{π}{4}$時,取等號.
∴周長的最大值為4$\sqrt{2}$R.
故答案為:4$\sqrt{2}$R.
點評 本題主要考查了基本不等式在最值問題中的應(yīng)用.本題利用了三角函數(shù)的性質(zhì)來求最值,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (-1,1) | C. | (0,1) | D. | (-∞,1),(0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=2x | B. | f(x)=-$\frac{1}{x}$ | C. | f(x)=log2|x| | D. | f(x)=-x2+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ±$\frac{12}{13}$ | B. | $\frac{12}{13}$ | C. | $±\frac{5}{13}$ | D. | -$\frac{5}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 存在x0>0,使得x2≤0 | B. | 若x≤0,則x2≤0 | ||
C. | 若x>0,則x2≤0 | D. | 存在x0>0,使得x2<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com