【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知BC=1,BB1=2,∠BCC1=90°,AB⊥側(cè)面BB1CC1 .
(1)求直線C1B與底面ABC所成角的正弦值;
(2)在棱CC1(不包含端點(diǎn)C,C1)上確定一點(diǎn)E的位置,使得EA⊥EB1(要求說明理由).
(3)在(2)的條件下,若AB= ,求二面角A﹣EB1﹣A1的大小.
【答案】
(1)解:如圖,以B為原點(diǎn)建立空間直角坐標(biāo)系,則B(0,0,0),C1(1,2,0),B1(0,2,0)
直三棱柱ABC﹣A1B1C1中,
平面ABC的法向量 ,又 ,
設(shè)BC1與平面ABC所成角為θ
,則
(2)解:設(shè)E(1,y,0),A(0,0,z),則 ,
∵EA⊥EB1,
∴
∴y=1,即E(1,1,0)所以E為CC1的中點(diǎn)
(3)解:∵A(0,0, ),則 ,
設(shè)平面AEB1的法向量m=(x1,y1,z1),
則 ∴ ,
取m=(1,1, ),
∵ ,
∴BE⊥B1E,又BE⊥A1B1∴BE⊥平面A1B1E,
∴平面A1B1E的法向量 ,
∴cos<m, >= ,
∴二面角A﹣EB1﹣A1為45°.
【解析】(1)求出平面的法向量與直線所在的向量,利用向量的有關(guān)運(yùn)算求出兩個(gè)向量的夾角,進(jìn)而轉(zhuǎn)化為線面角即可.(2)根據(jù)點(diǎn)的特殊位置設(shè)出點(diǎn)的坐標(biāo)為E(1,y,0),再利用向量的基本運(yùn)算證明兩個(gè)向量垂直即可證明兩條直線相互垂直.(3)結(jié)合題意求出兩個(gè)平面的法向量求出兩個(gè)法向量的夾角,再轉(zhuǎn)化為兩個(gè)平面的二面角即可.
【考點(diǎn)精析】關(guān)于本題考查的用空間向量求直線與平面的夾角,需要了解設(shè)直線的方向向量為,平面的法向量為,直線與平面所成的角為,與的夾角為, 則為的余角或的補(bǔ)角的余角.即有:才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的定義域R,則實(shí)數(shù)a的取值范圍為( )
A.a≤0或a≥4
B.0<a<4
C.0≤a≤4
D.a≥4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 是偶函數(shù),直線y=t與函數(shù)y=f(x)的圖象自左向右依次交于四個(gè)不同點(diǎn)A,B,C,D.若AB=BC,則實(shí)數(shù)t的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
極坐標(biāo)系中, 為極點(diǎn),半徑為2的圓的圓心坐標(biāo)為.
(1)求圓的極坐標(biāo)方程;
(2)設(shè)直角坐標(biāo)系的原點(diǎn)與極點(diǎn)重合, 軸非負(fù)關(guān)軸與極軸重合,直線的參數(shù)方程為(為參數(shù)),由直線上的點(diǎn)向圓引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某上市股票在30天內(nèi)每股的交易價(jià)格P(元)與時(shí)間t(天)組成有序數(shù)對(t,P),點(diǎn)(t,P)落在下圖中的兩條線段上,該股票在30天內(nèi)(包括30天)的日交易量Q(萬股)與時(shí)間t(天)的部分?jǐn)?shù)據(jù)如下表所示.
第t天 | 4 | 10 | 16 | 22 |
Q(萬股) | 36 | 30 | 24 | 18 |
(1)根據(jù)提供的圖象,寫出該種股票每股交易價(jià)格P(元)與時(shí)間t(天)所滿足的函數(shù)關(guān)系式;
(2)根據(jù)表中數(shù)據(jù)確定日交易量Q(萬股)與時(shí)間t(天)的一次函數(shù)關(guān)系式;
(3)在(2)的結(jié)論下,用y(萬元)表示該股票日交易額,寫出y關(guān)于t的函數(shù)關(guān)系式,并求出這30天中第幾日交易額最大,最大值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,(其中, 為自然對數(shù)的底數(shù), ……).
(1)令,若對任意的恒成立,求實(shí)數(shù)的值;
(2)在(1)的條件下,設(shè)為整數(shù),且對于任意正整數(shù), ,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)寫出曲線的參數(shù)方程和直線的普通方程;
(2)已知點(diǎn)是曲線上一點(diǎn),求點(diǎn)到直線的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a3=7,a5+a7=26.{an}的前n項(xiàng)和為Sn .
(1)求an及Sn;
(2)令bn=﹣ (n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中的“兩鼠穿墻題”是我國數(shù)學(xué)的古典名題:“今有垣厚若干尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,問何日相逢,各穿幾何?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻,大老鼠第一天進(jìn)一尺,以后每天加倍;小老鼠第一天也進(jìn)一尺,以后每天減半.”如果墻足夠厚,Sn為前n天兩只老鼠打洞長度之和,則Sn=尺.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com